Math 164: Multidimensional Calculus

Midterm 2

November 17, 2015

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Indicate your instructor with a check in the appropriate box:

Bobkova	TR 12:30-1:45pm	
Chen	MW 3:25-4:40pm	
Dummit	TR 3:25-4:40pm	
Salur	MWF 09:00-09:50am	

- You are responsible for checking that this exam has all 9 pages.
- No calculators, phones, electronic devices, books, notes are allowed during the exam.
- Show all work and justify all answers.
- Please sign the pledge below.

Pledge of Honesty

I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.

Signature:

\qquad

QUESTION	VALUE	SCORE
1	8	
2	8	
3	12	
4	15	
5	14	
6	14	
7	14	
8	15	
TOTAL	100	

1. (8 points) Suppose the equation $x^{2} z^{4}+2 y e^{x+z}=5$ defines z implicitly as a function of x and y. Find the value of $\frac{\partial z}{\partial x}$ at the point $(x, y, z)=(-1,2,1)$.
2. (8 points) Find an equation for the tangent plane to the surface $x y^{2} z+\ln (x+2 y+z)=2$ at the point $(x, y, z)=(2,-1,1)$.
3. (12 points) Consider the function $f(x, y)=x y^{2}$ and the point $P(1,2)$.
(a) Find the rate of change of f at P in the direction of the vector $\mathbf{u}=\left\langle\frac{\mathbf{2}}{\sqrt{\mathbf{1 3}}}, \frac{\mathbf{3}}{\sqrt{\mathbf{1 3}}}\right\rangle$.
(b) Find the maximal rate of change of f at P and the direction in which it occurs.
4. (15 points) Find the absolute minimum and maximum values of the function $f(x, y)=$ $4 x+6 y-x^{2}-y^{2}$ on the region $D=\{(x, y): 0 \leq x \leq 4,0 \leq y \leq 5\}$.
5. (14 points) Find the greatest and smallest values of $f(x, y)=2 x y$ on the ellipse $\frac{x^{2}}{4}+y^{2}=1$.
6. (14 points) Evaluate the double integral

$$
\int_{0}^{1} \int_{0}^{2} x y e^{x y^{2}} d x d y
$$

7. (14 points) Evaluate $\iint_{R} y d A$ where R is the triangular region with vertices $(0,0)$, $(3,0)$, and $(1,1)$.
8. (15 points) Consider the integral $I=\iint_{R}\left(x^{2}+y^{2}\right)^{4} d A$ where R is the region above the line $y=0$, below the line $y=x$, and inside the circle $x^{2}+y^{2}=4$, as pictured below:

(a) Set up (no need to evaluate) an iterated double integral for I in rectangular $x y$-coordinates with your choice of integration order.
(b) Evaluate the double integral in polar $r \theta$-coordinates.

Blank page for scratch work

