Math 164: Multidimensional Calculus

Final Exam

December 15, 2015

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Indicate your instructor with a check in the appropriate box:

Bobkova	TR 12:30-1:45pm	
Chen	MW 3:25-4:40pm	
Dummit	TR 3:25-4:40pm	
Salur	MWF 09:00-09:50am	

- You are responsible for checking that this exam has all 19 pages.
- No calculators, phones, electronic devices, books, notes are allowed during the exam.
- Show all work and justify all answers. Please sign the pledge below.

Pledge of Honesty

I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.

Signature: \qquad

Part A		
QUESTION	VALUE	SCORE
1	14	
2	12	
3	10	
4	10	
5	12	
6	16	
7	16	
8	10	
TOTAL	100	

Part B		
QUESTION	VALUE	SCORE
9	14	
10	14	
11	12	
12	12	
13	12	
14	12	
15	12	
16	12	
TOTAL	100	

Part A

1. (14 points) Consider the two planes $4 x+y-z=4$ and $x+4 y-z=1$.
(a) Find the (acute) angle between the planes.
(b) Find a parametrization for the line of intersection of these two planes.
2. (12 points) Find the distance between the two skew lines whose parametrizations are

$$
\begin{aligned}
& l_{1}:\langle x, y, z\rangle=\langle 1,0,0\rangle+t\langle-2,1,0\rangle \\
& l_{2}:\langle x, y, z\rangle=\langle 0,1,1\rangle+s\langle 2,-1,1\rangle .
\end{aligned}
$$

3. (10 points) A particle travels a total distance of 26π along the parametric curve

$$
\mathbf{r}(t)=(5 \sin t) \mathbf{i}+(5 \cos t) \mathbf{j}+12 t \mathbf{k}
$$

from the starting point $(0,-5,12 \pi)$. Find its new location.
4. (10 points) Evaluate the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{3}}{x^{4}+y^{6}}
$$

or show that it does not exist.
5. (12 points) Find the linearization of the function

$$
f(x, y)=\sqrt{12-x^{2}-7 y^{2}}
$$

at $(x, y)=(2,1)$, and then use it to find the approximate value of $f(2.05,0.98)$.
6. (16 points) Find the critical points of the function

$$
f(x, y)=x^{2} y-8 y^{2}-x^{2}
$$

and classify each of them as a local minimum, local maximum, or saddle point.
7. (16 points) Calculate the integral $\iint_{R} y d A$ where R is the (finite) region lying between the curves $x=y^{2}$ and $y=x-2$.
8. (10 points) Circle the correct response for the following questions (no work is required, and there is no partial credit):
(a) The result obtained by reversing the order of integration in the iterated double integral

$$
\int_{0}^{1} \int_{x}^{2} x d y d x
$$

is
(i) $\int_{0}^{1} \int_{x}^{2} x d x d y$
(iv) $\int_{0}^{1} \int_{y}^{2} x d x d y+\int_{1}^{2} \int_{0}^{y} x d x d y$
(ii) $\int_{0}^{2} \int_{0}^{y} x d x d y$
(v) $\int_{0}^{1} \int_{0}^{y} x d x d y+\int_{1}^{2} \int_{0}^{1} x d x d y$
(iii) $\int_{x}^{2} \int_{0}^{1} x d x d y$
(vi) $\int_{0}^{1} \int_{0}^{2} x d x d y+\int_{1}^{2} \int_{y}^{2} x d x d y$
(b) In polar coordinates, the integral

$$
\int_{-2}^{0} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} x d y d x
$$

is
(i) $\int_{\pi}^{2 \pi} \int_{0}^{2} r^{2} \cos \theta d r d \theta$
(iv) $\int_{-\pi / 2}^{\pi / 2} \int_{0}^{2} r \cos \theta d r d \theta$
(ii) $\int_{\pi / 2}^{3 \pi / 2} \int_{0}^{2} r^{2} \cos \theta d r d \theta$
(v) $\int_{\pi / 2}^{3 \pi / 2} \int_{0}^{2} r \cos \theta d r d \theta$
(iii) $\int_{0}^{2 \pi} \int_{0}^{2} r^{2} \cos \theta d r d \theta$
(vi) $\int_{0}^{2 \pi} \int_{0}^{2} r \cos \theta d r d \theta$

Part B

9. (14 points) Evaluate the triple integral $\iiint_{E} x d V$, where E is the solid tetrahedron bounded by the four planes $x=0, y=0, z=0$ and $x+y+z=1$, whose vertices are $(0,0,0)$, $(1,0,0),(0,1,0)$, and $(0,0,1)$.
10. (14 points) Evaluate the integral

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{-\sqrt{1-x^{2}-y^{2}}}^{\sqrt{1-x^{2}-y^{2}}} \sqrt{x^{2}+y^{2}+z^{2}} d z d y d x
$$

11. (12 points) Evaluate the line integral $\int_{C}(x-y+z+2) d s$, where C is the straight line segment from $(0,1,1)$ to $(1,0,1)$.
12. (12 points) Let f be a scalar function and \mathbf{F} be a vector field. For each expression, identify whether it is a scalar function, a vector field, or nonsense by circling the appropriate response (no work is required, and there is no partial credit).
Note that $\operatorname{grad}(f)=\nabla f$ denotes the gradient of f.

- $\operatorname{curl}(f)$	Scalar function	Vector field	Nonsense
- $\operatorname{grad}(f)$	Scalar function	Vector field	Nonsense
- $\operatorname{div}(\mathbf{F})$	Scalar function	Vector field	Nonsense
- curl $(\operatorname{grad}(f))$	Scalar function	Vector field	Nonsense
- $\operatorname{grad}(\mathbf{F})$	Scalar function	Vector field	Nonsense
- $\operatorname{grad}(\operatorname{div}(\mathbf{F}))$	Scalar function	Vector field	Nonsense
- $\operatorname{div}(\operatorname{grad}(f))$	Scalar function	Vector field	Nonsense
- $\operatorname{grad}(\operatorname{div}(f))$	Scalar function	Vector field	Nonsense
- $\operatorname{curl}(\operatorname{curl}(\mathbf{F}))$	Scalar function	Vector field	Nonsense
- $\operatorname{div}(\operatorname{div}(\mathbf{F}))$	Scalar function	Vector field	Nonsense
- $(\operatorname{grad}(f)) \times(\operatorname{div}(\mathbf{F}))$	Scalar function	Vector field	Nonsense
- $\operatorname{div}(\operatorname{curl}(\operatorname{grad}(f))))$	Scalar function	Vector field	Nonsense

13. (12 points) Find all possible values of the constants a and b such that the vector field

$$
\mathbf{F}(x, y, z)=\left(2 b x z^{3}+a y z+2 x y\right) \mathbf{i}+\left(2 b y+a x^{2}+a x z\right) \mathbf{j}+\left(a x y+b z+b x^{2} z^{2}\right) \mathbf{k}
$$

is conservative (i.e., that the work done by the field on a particle moving through space does not depend on the particle's path).
14. (12 points) Compute the work integral $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$, where

$$
\mathbf{F}(x, y)=\left(x^{2015}+x^{2} y\right) \mathbf{i}+\left(x y^{2}+2 e^{y}\right) \mathbf{j}
$$

and the closed path C, oriented counterclockwise, consists of the following three pieces:
C_{1} : the line segment from $(0,0)$ to $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$,
$C_{2}:$ the curve $y=\sqrt{1-x^{2}}$ with $-\frac{\sqrt{2}}{2} \leq x \leq \frac{1}{2}$,
C_{3} : the line segment from $\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ to $(0,0)$.
15. (12 points) Find the surface area of the part of the paraboloid $z=x^{2}+y^{2}$ that lies under the plane $z=4$.
16. (12 points) Compute the flux of the vector field

$$
\mathbf{F}(x, y, z)=\left(-3 x^{2} y\right) \mathbf{i}+(z-y) \mathbf{j}+(2 x) \mathbf{k}
$$

through the surface S given by the part of the plane $z=1+2 x+y$ lying above the rectangle $0 \leq x \leq 2,0 \leq y \leq 3$, with upward orientation.

No test material on this page.

Blank page for scratch work.

