1. (9 points) Find all the critical points of the function $f(x, y)=2 y^{3}+y x^{2}-y-2024$ and classify them as local maxima, local minima, or saddle points.

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=2 y x=0 \Rightarrow x=0 \text { or } y=0 \\
& \frac{\partial f}{\partial y}=6 y^{2}+x^{2}-1=0 \Rightarrow 6 y^{2}+x^{2}=1
\end{aligned}
$$

$$
\text { If } x=0 \Rightarrow 6 y^{2}=1 \Rightarrow y= \pm \frac{1}{\sqrt{6}} \Rightarrow\left(0, \pm \frac{1}{\sqrt{6}}\right)
$$

$$
\text { If } y=0 \Rightarrow x^{2}=1 \Rightarrow x= \pm 1 \Rightarrow(\pm 1,0)
$$

$$
D=f_{x x} f_{y y}-f_{x y}^{2}=(2 y)(12 y) \sim(2 x)^{2}=4\left(6 y^{2}-x^{2}\right) .
$$

- $D\left(0, \pm \frac{1}{\sqrt{6}}\right)=4\left(6\left(\frac{1}{\sqrt{6}}\right)^{2}-0\right)>0 . f_{x x}\left(0, \pm \frac{1}{\sqrt{6}}\right)= \pm \frac{2}{\sqrt{6}}$

So, $(0,1 / \sqrt{6})$ is a local min.
$\left(0,-\frac{1}{\sqrt{6}}\right)$ is a local max.

$$
\text { - } \left.D(\pm 1,0)=4\left(6(0)^{2}-1^{2}\right)<0 \Rightarrow \quad \text { Both }(1,0),(-1,0)\right)
$$

are saddle pts.
2. (9 points) Find the maximum and minimum of the function $f(x, y)=x-2 y+5$ subject to the constraint $x^{2}+y^{2}-3 x y=20$.
(let $g(x, y)=x^{2}+y^{2}-3 x y$. Then,

$$
\left\{\begin{array} { l }
{ \nabla f = \lambda \nabla g } \\
{ g = 2 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\langle 1,-2\rangle=\lambda\langle 2 x-3 y, 2 y-3 x\rangle \\
x^{2}+y^{2}-3 x y=20
\end{array}\right.\right.
$$

$1=\lambda(2 x-3 y) \rightarrow$ note: If $\lambda=0$, then $1=0$ Irish -: a remtradiction.
$1=\lambda(2 x-3 y) \rightarrow$ note: If $\lambda=0$, then $1=0$ which is a contradiction.
So, $\lambda \neq 0 \Rightarrow \frac{1}{\lambda}=2 x-3 y$.
Also have $-2=\lambda(2 y-3 x) \Rightarrow \frac{1}{\lambda}=-y+\frac{3}{2} x$

Then,

$$
\begin{aligned}
& 2 x-3 y=-y+\frac{3}{2} x \\
& \Rightarrow \quad \frac{x}{2}=2 y \Rightarrow x=4 y
\end{aligned}
$$

Then, the constraint says $(4 y)^{2}+y^{2}-3(4 y) y=20$

$$
\begin{gathered}
\Rightarrow 16 y^{2}+y^{2}-12 y^{2}=20 \\
\Rightarrow y^{2}=4 \\
\Rightarrow y= \pm 2
\end{gathered}
$$

$x=4 y \Rightarrow$ we get $(x, y)=(8,2)$ w/ $\lambda=\frac{1}{2 x-3 y}=\frac{1}{10}$
and $(x, y)=(-8,-2) w / \lambda=-\frac{1}{10}$

$$
\begin{array}{r}
f=x-2 y+5 \Rightarrow f(8,2)=9 \leftarrow \max \\
f(-8,-2)=1 \leftarrow \min
\end{array}
$$

3. (6 points) Let $f(x, y)=x^{2}+3 y^{2}$.
(a) Find the directional derivative of f in the direction of the vector $\mathbf{v}=\langle 1,-1\rangle$ at the point $(2,1)$.

$$
\nabla f=\langle 2 x, 6 y\rangle \Rightarrow \nabla f(2,1)=\langle 4,6\rangle
$$

Let $\vec{u}=\frac{\vec{v}}{|\vec{v}|}=\frac{1}{\sqrt{2}}\langle 1,-1\rangle$. Then,

$$
\begin{aligned}
\text { Let } u=\overline{|\vec{v}|} & =\overrightarrow{\sqrt{2}}(1) \\
D_{\vec{u}} f(2,1)=\nabla f(2,1) \cdot \stackrel{\rightharpoonup}{u} & =\frac{1}{\sqrt{2}}\langle 4, b\rangle \cdot\langle 1,-1\rangle \\
& =\frac{-2}{\sqrt{2}}=-\sqrt{2}
\end{aligned}
$$

(b) Find the unit vector in the direction for which $f(x, y)$ is increasing fastest at the point $(2,1)$.
f increases fastest in the direction of ∇f.

$$
\begin{aligned}
\Rightarrow \frac{\nabla f(2,1)}{|\nabla f(2,1)|}=\frac{\langle 4,6\rangle}{|\langle 4,6\rangle|}=\frac{2\langle 2,3\rangle}{|2\langle 2,3\rangle|} & =\frac{\langle 2,3\rangle}{\sqrt{2^{2}+3^{2}}} \\
& =\frac{\langle 2,3\rangle}{\sqrt{13}}
\end{aligned}
$$

4. (8 points) Complete each part below, showing all work.
(a) Evaluate the double integral $\iint_{D} e^{x} \cos y d A$ where D is the rectangular region

$$
\begin{aligned}
& D=\left\{(x, y) \in \mathbb{R}^{2} \mid 1 \leq x \leq 2,0 \leq y \leq \pi / 3\right\} \\
& \rightarrow \int_{0}^{\pi / 3} \int_{1}^{2} e^{x} \cos y d x d y=\left.\int_{0}^{\pi / 3} \cos y e^{x}\right|_{1} ^{2} d y \\
&=\left(e^{2}-e\right) \int_{0}^{\pi / 3} \cos y d y \\
&=\left(\left.e^{2-e) \sin y}\right|_{0} ^{\pi / 3}\right. \\
&=\left(e^{2}-e\right) \frac{\sqrt{3}}{2}
\end{aligned}
$$

(b) Evaluate the iterated integral $\int_{0}^{1} \int_{y}^{1} e^{x^{2}} d x d y$.

$$
D=\{(x, y) \mid 0 \leq y \leq 1, y \leq x \leq 1\}
$$

$$
D=\{(x, y) \mid 0 \leq y \leq 1, \quad y \leq x \leq 1\}
$$

$$
\Rightarrow D=\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq x\}
$$

$$
\begin{aligned}
& \Rightarrow \int_{0}^{1} \int_{y}^{1} e^{x^{2}} d x d y=\iint_{D} e^{x^{2}} d A \\
&=\int_{x=0}^{1} \int_{y=0}^{x} e^{x^{2}} d y d x \\
&=\int_{0}^{1} e^{x^{2}} x d x \\
& u=x^{2} \\
& \frac{\frac{1}{2}_{2}^{2}=\frac{10}{3}=0}{40}=0,1 \times 1=\frac{1}{2} \int_{u=0}^{1} e^{u} d u \\
&=\left.\frac{1}{2} e^{u}\right|_{0} ^{1}=\frac{e-1}{2}
\end{aligned}
$$

5. (9 points) Evaluate

$$
\int_{-3}^{0} \int_{-\sqrt{9-y^{2}}}^{\sqrt{9-y^{2}}} \int_{0}^{\sqrt{9-x^{2}-y^{2}}} x^{2} z+y^{2} z+z^{3} d z d x d y
$$

$$
\begin{aligned}
& \rightarrow \quad E=\left\{(x, y, z) \mid-3 \leq y \leq 0,-\sqrt{9-y^{2}} \leq x \leq \sqrt{9-y^{2}}, 0 \leq z \leq \sqrt{9 x^{2}-y^{2}}\right\} \\
& \text { Note }: z=\sqrt{9-x^{2}-y^{2}}
\end{aligned}
$$

by changing to spherical coordinates.

Note: $z=\sqrt{9-x^{2}-y^{2}}$ is upper hemisphere
since $z^{2}=9-x^{2}-y^{2}$ (u) $\Rightarrow x^{2}+y^{2}+z^{2}=9$

$E=$ quarter of solid sphere lying above D shown.

$$
\Rightarrow E=\left\{(\rho, \theta, \phi) \mid 0 \leq \rho \leq 3, \pi \leq \theta \leq 2 \pi, 0 \leq \phi \leq \frac{\pi}{2}\right\}
$$

$$
d V=\rho^{2} \sin \phi d \phi, \quad\left\{\begin{array}{l}
x=\rho \cos \theta \sin \phi \\
y=\rho \sin \theta \sin \phi \\
z=\rho \cos \phi
\end{array}\right.
$$

$$
\iiint_{E}\left(x^{2} z+y^{2} z+z^{3}\right) d V=\iiint_{E} z\left(x^{2}+y^{2}+z^{2}\right) d V
$$

$$
=\int_{\rho=0}^{E} \int_{\theta=\pi}^{2 \pi} \int_{\phi=0}^{\pi / 2} \rho \cos \phi\left(\rho^{2}\right) \rho^{2} \sin \phi d \phi d \theta d \rho
$$

$$
=\int_{0}^{3} \rho^{5} d \rho \cdot \int_{\pi}^{2 \pi} d \theta \cdot \int_{0}^{\pi / 2} \sin \phi \cos \phi d \phi
$$

$$
=\frac{1}{6}\left(3^{6}\right) \cdot \pi \cdot \int_{0}^{\pi / 2} \frac{\sin (2 \phi)}{2} d \phi
$$

$$
=\left.\frac{3^{6}}{6} \cdot \pi \cdot\left(-\frac{\cos (2 \phi)}{4}\right)\right|_{0} ^{\pi / 2}
$$

$$
=\frac{3^{6}}{6} \cdot \pi \cdot \frac{1}{2}=\frac{3^{5}}{4} \pi
$$

6. ($\mathbf{9}$ points) Let S be the solid bounded by the surfaces $z=x^{2}+y^{2}$ and $z=2-x^{2}-y^{2}$.
(a) Set up (but do NOT evaluate) an iterated integral in Cartesian coordinates to find the volume of S.

$$
\begin{aligned}
S & =\left\{(x, y, z) \mid(x, y) \text { in } D \text { and } x^{2}+y^{2} \leq z \leq 2-x^{2}-y^{2}\right\} \\
& =\left\{(x, y, z) \mid-1 \leqslant x \leqslant 1,-\sqrt{1-x^{2}} \leqslant y \leq \sqrt{1-x^{2}}, x^{2}+y^{2} \leq z \leq 2-x^{2}-y^{2}\right\} \\
\Rightarrow \operatorname{Vol}(S)=\iiint_{S} d V & =\int_{(x, y) \in D}\left[\int_{z=x^{2}+y^{2}}^{2-x^{2}-y^{2}} d z\right] d A \\
& =\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{z=x^{2}+y^{2}}^{2-x^{2}-y^{2}} d z d y d x
\end{aligned}
$$

(b) Set up (but do NOT evaluate) an iterated integral in cylindrical coordinates to find the volume of S.

$$
\text { In polar } D=\{(r, \theta) \mid 0 \leq r \leq 1,0 \leq \theta \leq 2 \pi\}
$$

$$
\begin{aligned}
\operatorname{Vol}(S)=\iiint_{S} d V & =\iint_{(x, y) \in D}\left[\int_{z=x^{2}+y^{2}}^{2-x^{2}-y^{2}} d z\right] d A \\
& =\int_{\theta=0}^{2 \pi} \int_{r=0}^{1} \int_{z=r^{2}}^{2-r^{2}} d z r d r d \theta
\end{aligned}
$$

(c) Evaluate either integral in parts (a) or (b) to find the volume of S.

$$
\begin{aligned}
\operatorname{vol}(s) & =\int_{\theta=0}^{2 \pi} \int_{r=0}^{1} \int_{z=r^{2}}^{2-r^{2}} d z r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{r=0}^{1}\left(2-r^{2}-r^{2}\right) r d r d \theta \\
& =2 \int_{0}^{2 \pi} d \theta \int_{0}^{1}\left(r-r^{3}\right) d r \\
& =\left.4 \pi\left(\frac{1}{2} r^{2}-\frac{1}{4} r^{4}\right)\right|_{0} ^{1}=4 \pi\left(\frac{1}{2}-\frac{1}{4}\right)=\pi
\end{aligned}
$$

