Math 164: Multidimensional Calculus

Final Exam

December 17, 2016

NAME (please print legibly):

Your University ID Number:

Indicate your instructor with a check in the appropriate box:

Kleene	TR 12:30-1:45pm	
Salur	MW 3:25-4:40pm	
Gafni	TR 3:25-4:40pm	
Lee	MWF 09:00-09:50am	

- You are responsible for checking that this exam has all 15 pages.
- No calculators, phones, electronic devices, books, notes are allowed during the exam.
- Show all work and justify all answers. Please sign the pledge below.

Pledge of Honesty

I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.

Signature:

Part A		
QUESTION	VALUE	SCORE
1	18	
2	16	
3	16	
4	16	
5	18	
6	16	
TOTAL	100	

Part B		
QUESTION	VALUE	
SCORE		
7	16	
8	16	
9	16	

Part A

1. (18 points)

Consider the vectors

$$
\mathbf{a}=\langle 1,-1,3\rangle, \quad \mathbf{b}=\langle-2,1,1\rangle, \quad \mathbf{c}=\langle 1,0,5\rangle
$$

Compute the following.
(a) The angle between \mathbf{a} and \mathbf{b}.

$$
\vec{a} \cdot \vec{b}=0 \Rightarrow \theta=90^{\circ}
$$

(b) The projection of \mathbf{b} onto \mathbf{c}.

$$
\operatorname{proj}_{c}(\vec{b})=\left(\frac{\vec{b} \cdot \vec{c}}{|c|^{2}}\right) \vec{c}=\frac{3}{26}\langle 1,0,5\rangle
$$

(c) The area of the parallelogram spanned by \mathbf{a} and \mathbf{c}.

$$
\begin{aligned}
\operatorname{arca}\left(\frac{c / \square / \square}{a}\right)=|\vec{a} \times \vec{c}|=\left|\begin{array}{ccc}
i & j & k \\
1 & -1 & 3 \\
1 & 0 & 5
\end{array}\right|=|-i-2 j+k| & =\sqrt{1+4+1} \\
& =\sqrt{6}
\end{aligned}
$$

2. (16 points) For each of the following statements, circle TRUE or FALSE. No work is required, and there is no partial credit.
(a) The curve $\mathbf{r}(t)=\left\langle t^{3},-t^{3}, 2 t^{3}\right\rangle$ is a line.

FALSE

$$
=\langle 1,-1,2\rangle t^{3}
$$

(b) If $\mathbf{u}(t)$ and $\mathbf{v}(t)$ are differentiable vector functions, then $\frac{d}{d t}[\mathbf{u}(t) \cdot \mathbf{v}(t)]=\mathbf{u}^{\prime}(t) \cdot \mathbf{v}^{\prime}(t)$.

TRUE FALSE product mic.
(c) If $|\mathbf{r}(t)|=1$ for all t then $\left|\mathbf{r}^{\prime}(t)\right|=0$.

TRUE

$$
\text { ex } / \vec{r}(t)=\langle\cos (t), \sin (t)\rangle
$$

(d) The curve $\mathbf{r}(t)=\langle\cos (t), \sin (t), t\rangle, 0 \leq t \leq 1$, has arclength 4π.

$A L=\int_{0}^{1} \sqrt{\sin ^{2}(t)+\cos ^{2}(t)+1} d t=\sqrt{2}$
3. (16 points) Find the limit, if it exists, or show that the limit does not exist.
(a)

$$
\lim _{(x, y) \rightarrow(1,1)} \frac{e^{x} \ln y}{x^{2}+2 y^{2}}=0
$$

$f(x, y)$ is continuous near $(1,1)$ and

$$
\begin{aligned}
& e^{x} \ln (y) \rightarrow e^{1} \ln (1)=e^{1} \cdot 0=0 \\
& \text { while } x^{2}+2 y^{2} \rightarrow 1+2=3 \neq 0
\end{aligned}
$$

(b)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x \sin y}{x^{2}+2 y^{2}}
$$

along the line $y=0, \quad f(x, y)=\frac{0}{x^{2}+0} \rightarrow 0$.
along the line $y=x, f(x, y)=\frac{x \sin (x)}{3 x^{2}}=\frac{\sin (x)}{3 x} \rightarrow \frac{1}{3}$.

Thus, $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ DNE.
4. (16 points) (a) Find the equation of the tangent plane to the surface $z=x^{2}+2 y^{2}$ at the point $(2,0,1)$.

$$
\prod_{1}^{2,0,1) .} \quad \nabla z=\langle 2 x, 4 y\rangle \Rightarrow \nabla z(2,0)=\langle 4,0\rangle
$$

should

$$
\text { be }(2,0,4)
$$

tangent plane: $z-z_{0}=\nabla z\left(x_{0}, y_{0}\right) \cdot\left\langle x-x_{0}, y-y_{0}\right\rangle$

$$
\begin{aligned}
& z-4=\langle 4,0\rangle\langle x-2, y-0\rangle \\
& z-4=4(x-2) \\
& z=4 x-4
\end{aligned}
$$

(b) What is an approximate value of $f(2.1,-0.1)$ when $f(x, y)=x^{2}+2 y^{2}$?

$$
\begin{gathered}
L(x, y)=4 x-8 \text { at }(2,0) \\
f(2.1,-0.1) \approx L(2.1 ;-0.1)=4(2.1)-8=.4 \\
f(21,-0.1) \approx .4
\end{gathered}
$$

5. (18 points) Find the extreme values of the function $f(x, y)=x y$ over the curve $x^{2}+y^{4}=3 / 4$.

$$
g(x, y)=x^{2}+y^{4}
$$

use Lagrange multipliers:

$$
\begin{aligned}
& \nabla f=\langle y, x\rangle \\
& \nabla g=\left\langle 2 x, 4 y^{3}\right\rangle
\end{aligned}
$$

(1) $y=\lambda 2 x$
(2) $x=\lambda 4 y^{3}$
(3) $x^{2}+y^{4}=\frac{3}{4}$
(1) and (2) \Rightarrow either $(x, y)=(0,0)$, which is not on the constraint or $\frac{y}{2 x}=\frac{x}{4 y^{3}} \Rightarrow x^{2}=2 y^{4}$
(3) $\Rightarrow 3 y^{4}=\frac{3}{4} \Rightarrow y^{4}=\frac{1}{4}$ and $x^{2}=\frac{1}{2}$

So the paints to consider
are $\left(\frac{1}{2}, \frac{1}{\sqrt{2}}\right),\left(\frac{1}{2},-\frac{1}{\sqrt{2}}\right),\left(-\frac{1}{2},-\frac{1}{\sqrt{2}}\right),\left(-\frac{1}{2}, \frac{1}{\sqrt{2}}\right)$

$$
\begin{aligned}
& \max =\frac{1}{2 \sqrt{2}} \\
& \min =\frac{-1}{2 \sqrt{2}}
\end{aligned}
$$

6. (16 points) Evaluate the integral by reversing the order of integration.

$$
\begin{aligned}
& \int_{0}^{1} \int_{x}^{1} e^{x / y} d y d x \\
= & \int_{0}^{1} \int_{0}^{y} e^{x / y} d x d y \\
= & \int_{0}^{1}\left[y e^{x / y}\right]_{0}^{y} d y \\
= & \int_{0}^{1}\left[y e^{1}-y e^{0}\right] d y \\
= & \left.(e-1) \frac{1}{2} y\right]_{0}^{2} \\
= & \frac{1}{2}(e-1)
\end{aligned}
$$

Part B
7. (16 points) Find the volume of the solid that lies inside the sphere $x^{2}+y^{2}+z^{2}=4$ and outside the cylinder $x^{2}+y^{2}=1$.

$$
\begin{aligned}
V=2 \iint_{D} \sqrt{4-r^{2}} r d r d \theta & =2 \int_{0}^{2 \pi}\left[-\frac{1}{2} \cdot \frac{2}{3}\left(4-r^{2}\right)^{3 / 2}\right]_{1}^{2} d \theta \\
& =2 \cdot 2 \pi \cdot \frac{-1}{3}\left(0-3^{3 / 2}\right)
\end{aligned}
$$

$$
D=\{(r, \theta) \mid 0 \leq \theta \leq 2 \pi, 1 \leq r \leq 2\}
$$

8. (16 points) Evaluate the line integral $\int_{C} x y z d s$, where C is the line segment from $(1,2,3)$ to $(2,4,5)$.

$$
\vec{r}(t)=(1-t)\langle 1,2,3\rangle+t\langle 2,4,5\rangle \text { for } 0 \leq t \leq 1
$$

or C is given by $\left\{\begin{array}{l}x=1-t+2 t=1+t \\ y=(1-t) 2+4 t=2+2 t \\ z=(1-t) 3+5 t=3+2 t\end{array}\right\}$ so $d s=\sqrt{1^{2}+2^{2}+2^{2} d t}=3 d t$

$$
\begin{aligned}
\int_{C} x y z d s & =\int_{0}^{1}(1+t)(2+2 t)(3+2+) 3 d t \\
& =6 \int_{0}^{1}\left(3+8 t+74 t^{2}+2 t^{3}\right) d t \\
& =6\left[3 t+4 t^{2}+\frac{7}{3} t^{3}+\frac{1}{2}+4\right]_{0}^{1} \\
& =59
\end{aligned}
$$

9. ($\mathbf{1 6}$ points) Let T be the triangle with vertices $(1,0),(1,1)$ and (7, let \mathbf{F} be the vector field given by
should be $(0,1)$

$$
\begin{aligned}
\mathbf{F}(x, y) & =\left\langle x y^{2} \sin \left(x^{2}\right)+4 y x^{2},-y \cos \left(x^{2}\right)\right\rangle . \\
& =\langle\mathrm{P}, \mathbf{Q}\rangle
\end{aligned}
$$

Compute $\oint_{\partial T} \mathbf{F} \cdot \mathbf{d r}$.

$$
T=\{(x, y) \mid 0 \leq x \leq 1,1-x \leq y \leq 1\}
$$

$$
\begin{aligned}
\oint_{\partial T} \vec{F} \cdot d \vec{r} & =\int_{T}^{\text {Greens Thu }}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A \\
& =\iint_{T}\left(y \sin \left(x^{2}\right) \sqrt{2} x-2 x y \sin \left(x^{2}\right)+4 x^{2}\right) d A \\
& =\int_{0}^{1} \int_{1-x}^{1} 4 x^{2} d y d x \\
& =\int_{0}^{1} 4 x^{2}(1-(1-x)) d x \\
& =\int_{i}^{1} 4 x^{3} d x \\
& \left.=x^{4}\right]_{0}^{1} \\
& =1
\end{aligned}
$$

10. (18 points) (a) Find a potential function for the vector field

$$
\mathbf{F}(x, y, z)=\left\langle y z+2 x y, x z+x^{2}, x y+4 z\right\rangle=\nabla f \text { for }
$$

$$
f(x, y, z)=x y z+x^{2} y+2 z^{2}+C \quad(\text { can take } c=0) \text { bn eychalluyit. }
$$

othemise, use $f_{x}=y z+2 x y \Rightarrow f=x y z+x^{2} y+g(y, z)$

$$
\begin{aligned}
& f_{y}=x z+x^{2}+g_{y}=x z+x^{2} \Rightarrow g_{y}=0 \Rightarrow f=x y z+x^{2} y+g(z) \\
& f_{z}=x y+0+g^{\prime}(z) \Rightarrow g^{\prime}(z)=4 z \Rightarrow g(z)=2 z^{2}+c
\end{aligned}
$$

(b) Evaluate the line integral $\int_{C} \mathbf{F} \cdot \mathbf{d r}$, where C is the oriented curve parametrized by $r(t)=\left\langle t, t^{2}, t^{4}-1\right\rangle$ for $0 \leq t \leq 1 . \quad \vec{r}(0)=\langle 0,0,-1\rangle, \vec{r}(1)=\langle 1,1,0\rangle$

$$
\begin{aligned}
\int_{C} \vec{F} \cdot d \vec{r}=\int_{C} \nabla f \cdot d r & =f(1,1,0)-f(0,0,-1) \quad \text { by F.T. of L.I.s } \\
& =1-2=-1
\end{aligned}
$$

11. (16 points) Evaluate the surface integral $\iint x^{2} y z d S$, where the surface S is the part of the plane $z=1+2 x+3 y$ that lies above the rectangle $[0,3] \times[0,2]=D$

$$
\begin{aligned}
\iint_{S} f(x, y, z) d S & =\iint_{D} f(x, y, g(x, y)) \sqrt{\left(\frac{d z}{d x}\right)^{2}+\left(\frac{d z}{d y}\right)^{2}+1} d A \\
& =\int_{0}^{3} \int_{0}^{2} x^{2} y(1+2 x+3 y) \sqrt{2^{2}+3^{2}+1} d y d x \\
& =\sqrt{14} \int_{0}^{3} \int_{0}^{2}\left(x^{2} y+2 x^{3} y+3 x^{2} y^{2}\right) d y d x \\
& =\sqrt{14} \int_{0}^{3}\left(\frac{1}{2} x^{2} y^{2}+x^{3} y^{2}+x^{2} y^{3}\right)_{0}^{2} d x \\
& =\sqrt{14} \int_{0}^{3}\left(10 x^{2}+4 x^{3}\right) d x \\
& =\sqrt{14}\left[\frac{10}{3} x^{3}+x^{4}\right]_{0}^{3} \\
& =\sqrt{14}(171)
\end{aligned}
$$

12. ($\mathbf{1 8}$ points) Compute the flux of the vector field

$$
\mathbf{F}(x, y, z)=y \mathbf{i}+x \mathbf{j}+z \mathbf{k}
$$

through the surface S given by the boundary of the solid region E enclosed by the paraboloid $z=1-x^{2}-y^{2}$ and the plane $z=0$. Here S is given the positive (outward) orientation with respect to E.

(1) $F=\langle P, Q, R\rangle$ with P, Q, R having. continuous partials on all of $\mathbb{R}^{3} \checkmark$
(2) $\operatorname{div} \vec{F}=\frac{\partial p}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial p}{\partial z}=0+0+1=1$
(3) flux of \vec{F} through $S=\iint_{6} \vec{F} \cdot d \vec{S}=\iint_{\text {DIV HM }} \iint_{E} d N \vec{F} d V=\iiint_{E} 1 d V$

$$
\left.=\int_{0}^{2 \pi} \int_{0}^{1 \frac{1}{2}}\left(1-r^{2}\right) r d r d \theta=2 \pi \cdot\left[\frac{1}{2} r^{2}-\frac{1}{4} r^{4}\right]_{0}^{1}=2 \pi \cdot \frac{1}{4}=\frac{\pi}{2}\right]
$$

