Math 164: Multidimensional Calculus

Midterm 1
October 11, 2016

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Indicate your instructor with a check in the appropriate box:

Kleene	TR 12:30-1:45pm	
Salur	MW 3:25-4:40pm	
Gafni	TR 3:25-4:40pm	
Lee	MWF 09:00-09:50am	

- You have 75 minutes to work on this exam.
- You are responsible for checking that this exam has all 9 pages.
- No calculators, phones, electronic devices, books, notes are allowed during the exam.
- Show all work and justify all answers.
- Please sign the pledge below.

Pledge of Honesty

I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.

Signature: \qquad

QUESTION	VALUE	SCORE
1	15	
2	20	
3	15	
4	10	
5	15	
6	15	
7	10	
TOTAL	100	

1. (15 points) Consider the vectors $a=<1,0,0\rangle, b=<1,0,-1>$ and $c=<1,2,-1>$.
(a) Compute the scalar projection of b onto c.

$$
\operatorname{comp}_{c}(b)=\frac{b \cdot c}{|c|}=\frac{1+0+1}{\sqrt{1+4+1}}=\frac{2}{\sqrt{b}}
$$

(b) Find the angle between a and b.

$$
\begin{aligned}
a \cdot b=|a||b| \cos \theta & \Rightarrow 1=1 \cdot \sqrt{2} \cdot \cos \theta \\
\cos \theta & =\frac{1}{\sqrt{2}} \Rightarrow \theta=\frac{\pi}{4}
\end{aligned}
$$

(c) A vector $v=<5, y, z>$ satisfies $a \cdot v=b \cdot v=c \cdot v$. Find y and z.

$$
\left.\left.\begin{array}{l}
a \cdot v=5 \\
b \cdot v=5-z \\
c \cdot v=5+2 y-z
\end{array}\right\} \Rightarrow z=0 \quad \begin{array}{l}
\vec{v}=\langle 5,0,0\rangle
\end{array}\right\} \Rightarrow y=0
$$

2. (20 points) Consider the four points $P(0,1,5), Q(1,2,8), R(2,-1,0)$, and $S(1,2,3)$
(a) Find an equation for the plane that passes through points P, Q, and R.

$$
\begin{aligned}
& \left.\begin{array}{r}
\text { ind an equation for the plane that passes through points } P, Q, \text { and } R . \\
\vec{a}=\vec{b}=\overrightarrow{P R}=\langle 1,1,3\rangle \\
1
\end{array}\right\} \Rightarrow \vec{a} \times \vec{b}=\left|\begin{array}{cc}
1 & j \\
1 & 1 \\
2 & -2-5
\end{array}\right|=i(-5+6)-j(-5-6) \\
& +k(-2-2) \\
& \vec{n} \cdot\langle x-0, y-1, z-5\rangle=0
\end{aligned}
$$

$$
1(x-0)+11(y-1)-4(z-5)=0
$$

$$
x+11(y-1)-4(z-5)=0
$$

(b) Find the area of the triangle with vertices P, Q, and R.

$$
\begin{aligned}
\text { area of } \Delta=\frac{1}{2} \text { area of } \quad & =\frac{1}{2}|a| \cdot|b| \sin \theta \\
& =\frac{1}{2}|a \times b| \\
& =\frac{1}{2} \sqrt{1+12 \mid+16} \\
& =\frac{1}{2} \sqrt{138}
\end{aligned}
$$

(c) Find the volume of the parallelepiped determined by P, Q, R, and S.

$$
\begin{aligned}
\operatorname{vol}(\underset{c}{c}=\overrightarrow{P S}=\langle 1,1,-2\rangle \quad=|c \cdot(a \times b)| & =|\langle 1,1,-2\rangle \cdot\langle 1,11,-4\rangle|=|1+11+8| \\
& =20
\end{aligned}
$$

(d) Find the distance from S to the plane determined by P, Q, and R.

$$
D=\frac{20}{k_{3} \sqrt{130}}=\frac{20}{\sqrt{185}}
$$

since volume $=D$. area of
3. (15 points) Let ℓ_{1} be the line that passes through the points $(1,-2,3)$ and $(2,0,-1)$, and let ℓ_{2} be the line that passes through the point $(3,1,2)$ and is perpendicular to the plane $x+2 y+4 z=0$.
(a) Find symmetric and parametric equations for ℓ_{1}. Clearly label each set as symmetric or parametric-

$$
\operatorname{l}_{1}:\left[\begin{array}{l}
x=1+t \\
y=-2+2 t \\
z=3-4 t
\end{array}\right\}\left[\frac{\text { parametric }}{t \in \mathbb{V}}, \overrightarrow{v_{1}}=\langle 1,2,-4\rangle\right.
$$

(b) Find symmetric and parametric equations for ℓ_{2}. Clearly label each set as symmetric or parametric. parametric

$$
\begin{array}{ll}
l_{2}:\left\{\begin{array}{l}
x=3+5 \\
y=1+25 \\
z=2+45
\end{array}\right\} s \in \mathbb{R} & \vec{V}_{2}=\vec{n}=\langle 1,2,4\rangle \\
x-3=\frac{y-1}{2}=\frac{z-2}{4}
\end{array}
$$

(c) Are these lines intersecting, parallel, or skew? Briefly explain your answer.

$$
\left.\begin{array}{l}
1+t=3+5 \Rightarrow t=5+2 \Rightarrow t-5=2\} \Rightarrow 4=3 \times x \text { not parallel since } \overrightarrow{V_{1}} \text { not } \\
-2+2 t=1+25 \Rightarrow 2(t-s)=3
\end{array}\right\} \begin{aligned}
& \text { nosotn }
\end{aligned}
$$

- not intersecting because even the first two simultaneous equations in t \&s give no solution.

4. (10 points) Consider the curve $\mathbf{r}(t)=2 t \mathbf{i}+(3-t) \mathbf{j}-2 t \mathbf{k}$.
(a) Find the arc length of the curve between $t=0$ and $t=1$.

$$
\begin{aligned}
A L & \left.=\int_{0}^{1} \sqrt{(2)^{2}+(-1)^{2}+(-2)^{2}} d t=\int_{0}^{1} \sqrt{9} d t=3 t\right]_{0}^{1}=3 \\
r^{\prime}(t) & =2 i-j-2 k \\
\left|r^{\prime}(t)\right| & =\sqrt{(2)^{2}+(-1)^{2}+(-2)^{2}}
\end{aligned}
$$

(b) Reparametrize the curve in terms of arc length s measured from $t=0$ in the direction of increasing t.

$$
\begin{aligned}
& s(t)=\int_{0}^{t}\left|r^{\prime}(t)\right| d t=\int_{0}^{t} 3 d t=3 t \Rightarrow t=t(s)=\frac{s}{3} \\
& \text { so } \vec{r}(t)=2\left(\frac{s}{3}\right) \vec{i}+\left(3-\frac{s}{3}\right) \vec{j} \\
& -2\left(\frac{s}{3}\right) \vec{k} \\
& r^{\prime}(t)=2 i+(-1) j+(-1) k \quad \vec{r}(t)=\frac{2}{3} s \vec{i}+\left(3-\frac{s}{3}\right) \vec{j} \\
& -\frac{2}{3} s \vec{k}
\end{aligned}
$$

5. (15 points) Consider the curve $\mathbf{r}(t)=\cos 2 t \mathbf{i}+\sin 2 t \mathbf{j}+2 t \mathbf{k}$.
(a) Find the unit tangent vector $\mathrm{T}(t)$.

$$
\begin{aligned}
\vec{T}(t)=\frac{r^{\prime}(t)}{\left|r^{\prime}(t)\right|} & =\frac{-2 \sin (2 t) \vec{i}+2 \cos 2 t \vec{j}+2 \vec{k}}{\sqrt{4 \sin ^{2}(2 t)+4 \cos ^{2} 2 t+4}} \\
& =\frac{-2 \sin (2 t) \vec{i}+2 \cos 2 t \vec{j}+2 \vec{k}}{\sqrt{4+4}} \\
& =\frac{1}{\sqrt{2}}(-\sin (2 t) \vec{i}+\cos (2 t) \vec{j}+\vec{k})
\end{aligned}
$$

(b) Find the curvature $\kappa(t)$. Recall the curvature formula $\kappa(t)=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|}$.

$$
\begin{aligned}
& \left.k(t)=\frac{\sqrt{2}}{2 \sqrt{2}}=\frac{1}{2}\right] \\
& T^{\prime}(t)=\frac{1}{\sqrt{2}}(-2 \operatorname{sos}(2 t) \vec{i}=2 \sin (2 t) \vec{j}+0 \vec{k}) \\
& \left|T^{\prime}(t)\right|=\frac{1}{\sqrt{2}} \sqrt{4\left(\cos ^{2}(4)+\sin ^{2}(t)\right)}=\frac{2}{\sqrt{2}}=\overrightarrow{\sqrt{2}} \\
& \left|r^{\prime}(t)\right|=\frac{2 \sqrt{2}}{}
\end{aligned}
$$

6. (15 points) A gun has a muzzle speed of 80 meters per second.

(a) Assuming projectile motion, find the position function $r(t)$. Neglect air resistance and use $g=9.8 \mathrm{~m} / \mathrm{sec}^{2}$ as the acceleration of gravity.

$$
\begin{aligned}
& \vec{a}(t)=0 \hat{j}-9.8 \hat{j}=\langle 0,-9.8\rangle \\
& \vec{v}(t)=\langle 0,-9.8\rangle t+\langle 80 \cos \theta, 80 \sin \theta\rangle \\
& \vec{r}(t)=\langle 0,-4.9\rangle t^{2}+\langle 80 \cos \theta, 80 \sin \theta\rangle t \quad{ }^{2}+\langle 0,0\rangle
\end{aligned}
$$

(b) What angle of elevation should be used to hit an object 200 meters away?

$$
\begin{aligned}
& r_{x}=80 \cos \theta t \text { and } r_{y}=-4.9 t^{2}+80 \sin \theta t=0 \\
& \text { so } 200=\frac{80 \cos \theta \cdot 80 \sin \theta}{4.9} \quad \text { when } t=0 \text { and } t=\frac{80 \sin \theta}{4.9} \\
& \frac{200 \cdot 4.9}{80^{2}}=\sin \theta \cos \theta=\frac{1}{2} \sin 2 \theta \\
& \frac{400 \cdot 4.9}{80^{2}}=\sin 2 \theta \\
& \frac{1}{2} \arcsin \left(\frac{400.4 .9}{80^{2}}\right)=\theta
\end{aligned}
$$

7. (10 points) Evaluate the limit or show that it does not exist.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{4 x y}{x^{2}+2 y^{2}} \quad$ through $x=0$, get 0 though $x=y$, get $\frac{4 x^{2}}{3 x^{2}} \Rightarrow \frac{4}{3} \neq 0$
[NE]
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+5 y^{3}}{x^{2}+y^{2}}$

Hint: Use polar coordinates: $x=r \cos \theta, y=r \sin \theta$.

$$
\begin{aligned}
& \frac{r^{3} \cos ^{3} \theta+5 r^{3} \sin ^{3} \theta}{r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)}=\frac{r^{3} \cos ^{2} \theta+\operatorname{sr}^{3} \sin ^{2} \theta}{r^{2}}= \\
& r \cos ^{3} \theta+5 \sin ^{3} \theta=r(\underbrace{\operatorname{cosen}^{2} \theta}_{\cos ^{3} \theta+5 \sin ^{3} \theta}) ~ \text { a as } r \rightarrow 0^{+}
\end{aligned}
$$

Blank page for scratch work

