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A third method for visualizing the twisted cubic is to realize that it also lies on the 
cylin der z − x 3. So it can be viewed as the curve of intersection of the cylinders y − x 2 
and z − x 3. (See Figure 11.)
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We have seen that an interesting space curve, the helix, occurs in the model of DNA.  
Another notable example of a space curve in science is the trajectory of a positively 
charged particle in orthogonally oriented electric and magnetic fields E and B. Depend-
ing on the initial velocity given the particle at the origin, the path of the particle is either 
a space curve whose projection onto the horizontal plane is the cycloid we studied in 
Section 10.1 [Figure 12(a)] or a curve whose projection is the trochoid investigated in 
Exercise 10.1.40 [Figure 12(b)].
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 FIGURE 13

For further details concerning the physics involved and animations of the trajectories 
of the particles, see the following websites:

 ■ www.physics.ucla.edu/plasma-exp/Beam/

■ www.phy.ntnu.edu.tw/ntnujava/index.php?topic=36

TEC Visual 13.1C shows how curves 
arise as intersections of surfaces.

FIGURE 11

Some computer algebra systems pro-
vide us with a clearer picture of a space 
curve by enclosing it in a tube. Such  
a plot enables us to see whether one 
part of a curve passes in front of or 
behind another part of the curve. For 
example, Figure 13 shows the curve  
of Figure 12(b) as rendered by the 
tubeplot command in Maple.

FIGURE 12  
Motion of a charged particle in 
orthogonally oriented electric and 
magnetic fields 

1–2 Find the domain of the vector function.

 1. rstd − Klnst 1 1d, 
t

s9 2 t 2
, 2 tL

 2. rstd − cos t i 1 ln t j 1
1

t 2 2
 k

3–6 Find the limit.

 3. lim
t l 0

 Se23 t i 1
t 2

sin2t
j 1 cos 2t kD

 4. lim
t l 1

 S t 2 2 t
t 2 1

 i 1 st 1 8  j 1
sin ! t

ln t
 kD
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854 CHAPTER 13  Vector Functions

 21. x − t cos t,  y − t,  z − t sin t,  t > 0

 22. x − cos t,  y − sin t,  z − 1ys1 1 t 2d

 23. x − t,  y − 1ys1 1 t 2 d,  z − t 2

 24. x − cos t,  y − sin t,  z − cos 2t

 25. x − cos 8t,  y − sin 8t,  z − e 0.8 t,  t > 0

 26. x − cos2 t,  y − sin2 t,  z − t

 27.  Show that the curve with parametric equations x − t cos t, 
y − t sin t, z − t lies on the cone z2 − x 2 1 y 2, and use this 
fact to help sketch the curve.

 28.  Show that the curve with parametric equations x − sin t, 
y − cos t, z − sin2t is the curve of intersection of the surfaces 
z − x 2 and x 2 1 y 2 − 1. Use this fact to help sketch the curve.

 29.  Find three different surfaces that contain the curve 
rstd − 2t i 1 e t j1 e 2 t k.

 30.  Find three different surfaces that contain the curve 
rstd − t 2 i 1 ln t j1 s1ytd k.

31.   At what points does the curve rstd − t i 1 s2t 2 t 2d k inter-
sect the paraboloid z − x 2 1 y 2?

 32.  At what points does the helix rstd − ksin t, cos t, tl intersect 
the sphere x 2 1 y 2 1 z2 − 5?

33–37 Use a computer to graph the curve with the given vector 
equation. Make sure you choose a parameter domain and view-
points that reveal the true nature of the curve.

 33. rstd − kcos t sin 2t, sin t sin 2t, cos 2tl

 34. rstd − k te t, e2t, tl

 35. rstd − ksin 3t cos t, 14 t, sin 3t sin tl
 36. rstd − kcoss8 cos td sin t, sins8 cos td sin t, cos tl

 37. rstd − kcos 2t, cos 3t, cos 4tl

 38.  Graph the curve with parametric equations x − sin t,  
y − sin 2t, z − cos 4 t. Explain its shape by graphing its 
projections onto the three coordinate planes.

 39.  Graph the curve with parametric equations

x − s1 1 cos 16td cos t

y − s1 1 cos 16td sin t

z − 1 1 cos 16t

   Explain the appearance of the graph by showing that it lies on 
a cone.

 40. Graph the curve with parametric equations

 x − s1 2 0.25 cos 2 10t  cos t

 y − s1 2 0.25 cos 2 10t  sin t

 z − 0.5 cos 10t

;

;

;

;

 5. lim
tl `

 K 1 1 t 2

1 2 t 2 , tan21 t, 
1 2 e22 t

t L
 6. lim

tl `
 Kte2t, 

t 3 1 t
2t 3 2 1

, t sin 
1
t L

7–14 Sketch the curve with the given vector equation. Indicate 
with an arrow the direction in which t increases.

 7. rstd − ksin t, t l 8. rstd − kt 2 2 1, tl
 9. rstd − kt, 2 2 t, 2tl 10. rstd − ksin ! t, t, cos ! tl
 11. rstd − k3, t, 2 2 t 2l
 12. rstd − 2 cos t i 1 2 sin t j1 k

 13. rstd − t 2 i 1 t 4 j1 t 6 k

 14. rstd − cos t i 2 cos t j1 sin t k

15–16 Draw the projections of the curve on the three coordinate 
planes. Use these projections to help sketch the curve.

 15. rstd − kt, sin t, 2 cos tl 16. rstd − kt, t, t 2l

17–20 Find a vector equation and parametric equations for the 
line segment that joins P to Q.

 17. Ps2, 0, 0d,  Qs6, 2, 22d 18. Ps21, 2, 22d,  Qs23, 5, 1d

 19. Ps0, 21, 1d,  Q(1
2,  13,  14) 20. Psa, b, cd,  Qsu, v, wd

21–26 Match the parametric equations with the graphs  
(labeled I–VI). Give reasons for your choices.
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 SECTION 13.2  Derivatives and Integrals of Vector Functions 855

 51. (a)  Graph the curve with parametric equations

 x − 27
26 sin 8t 2 8

39 sin 18t

 y − 227
26 cos 8t 1 8

39 cos 18t

 z − 144
65  sin 5t

 (b)  Show that the curve lies on the hyperboloid of one sheet 
144x 2 1 144y 2 2 25z 2 − 100.

 52.  The view of the trefoil knot shown in Figure 8 is accurate, 
but it doesn’t reveal the whole story. Use the parametric 
equations

x − s2 1 cos 1.5td cos t

y − s2 1 cos 1.5td sin t

z − sin 1.5t

   to sketch the curve by hand as viewed from above, with 
gaps indicating where the curve passes over itself. Start by 
showing that the projection of the curve onto the xy-plane 
has polar coordinates r − 2 1 cos 1.5t and " − t, so r 
varies between 1 and 3. Then show that z has maximum and 
minimum values when the projection is halfway between 
r − 1 and r − 3.

     When you have finished your sketch, use a computer to 
draw the curve with viewpoint directly above and compare 
with your sketch. Then use the computer to draw the curve 
from several other viewpoints. You can get a better impres-
sion of the curve if you plot a tube with radius 0.2 around  
the curve. (Use the tubeplot command in Maple or the 
tubecurve or Tube command in Mathematica.)

 53.  Suppose u and v are vector functions that possess limits as 
t l a and let c be a constant. Prove the following prop erties 
of limits.

 (a) lim
t la

 fustd 1 vstdg − lim
t la

 ustd 1 lim
t la

 vstd

 (b) lim
t l a

 custd − c lim
t l a

 ustd

 (c) lim
t l a

 fustd ? vstdg − lim
t l a

 ustd ? lim
t l a

 vstd

 (d) lim
t l a

 fustd 3 vstdg − lim
t l a

 ustd 3 lim
t l a

 vstd

 54.  Show that lim t l a rstd − b if and only if for every « . 0  
there is a number # . 0 such that 

if 0 , | t 2 a | , #  then  | rstd 2 b | , «

;

;

   Explain the appearance of the graph by showing that it lies 
on a sphere.

 41.  Show that the curve with parametric equations x − t 2, 
y − 1 2 3t, z − 1 1 t 3 passes through the points s1, 4, 0d 
and s9, 28, 28d but not through the point s4, 7, 26d.

42–46 Find a vector function that represents the curve of 
intersection of the two surfaces.

 42.  The cylinder x 2 1 y 2 − 4 and the surface z − xy

 43. The cone z − sx 2 1 y 2  and the plane z − 1 1 y

 44.  The paraboloid z − 4x 2 1 y 2 and the parabolic  
cylinder y − x 2

 45. The hyperboloid z − x 2 2 y 2 and the cylinder x 2 1 y 2 − 1

 46.  The semiellipsoid x 2 1 y 2 1 4z 2 − 4, y > 0, and the  
cylinder x 2 1 z 2 − 1

 47.  Try to sketch by hand the curve of intersection of the circu-
lar cylinder x 2 1 y 2 − 4 and the parabolic cylinder z − x 2.  
Then find parametric equations for this curve and use these 
equations and a computer to graph the curve.

 48.  Try to sketch by hand the curve of intersection of the  
parabolic cylinder y − x 2 and the top half of the ellipsoid 
x 2 1 4y 2 1 4z2 − 16. Then find parametric equations for  
this curve and use these equations and a computer to graph  
the curve.

 49.  If two objects travel through space along two different 
curves, it’s often important to know whether they will col-
lide. (Will a missile hit its moving target? Will two aircraft 
collide?) The curves might intersect, but we need to know 
whether the objects are in the same position at the same 
time. Suppose the trajectories of two particles are given by 
the vector functions

r1 std − kt 2, 7t 2 12, t 2l    r2 std − k4t 2 3, t 2, 5t 2 6l

  for t > 0. Do the particles collide?

 50.  Two particles travel along the space curves

r1 std − kt, t 2, t 3l    r2 std − k1 1 2t, 1 1 6t, 1 1 14tl

  Do the particles collide? Do their paths intersect?

;

;

Later in this chapter we are going to use vector functions to describe the motion of plan-
ets and other objects through space. Here we prepare the way by developing the calculus 
of vec tor functions.

Derivatives
The derivative r9 of a vector function r is defined in much the same way as for real- 
valued functions:
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860 CHAPTER 13  Vector Functions

 1. The figure shows a curve C given by a vector function rstd.
 (a) Draw the vectors rs4.5d 2 rs4d and rs4.2d 2 rs4d.
 (b) Draw the vectors

rs4.5d 2 rs4d
0.5

    and    
rs4.2d 2 rs4d

0.2

 (c)  Write expressions for r9s4d and the unit tangent  
vector Ts4d.

 (d)  Draw the vector Ts4d.

x0 1

1

y
RC

Q

P

r(4.5)

r(4.2)

r(4)

 2. (a)  Make a large sketch of the curve described by the vector 
function rstd − kt 2, t l, 0 < t < 2, and draw the vectors 
rs1d, rs1.1d, and rs1.1d 2 rs1d.

 (b)  Draw the vector r9s1d starting at (1, 1), and compare it 
with the vector

rs1.1d 2 rs1d
0.1

   Explain why these vectors are so close to each other in 
length and direction.

3–8 
(a) Sketch the plane curve with the given vector equation.
(b) Find r9std.
(c)  Sketch the position vector rstd and the tangent vector r9std for 

the given value of t.

 3. rstd − kt 2 2, t 2 1 1l,  t − 21

 4. rstd − kt 2, t 3l,  t − 1

 5. rstd − e2 t i 1 et j,  t − 0

 6. rstd − e t i 1 2t j, t − 0

 7. rstd − 4 sin t i 2 2 cos t j, t − 3!y4

 8. rstd − scos t 1 1d i 1 ssin t 2 1d j, t − 2!y3

9–16 Find the derivative of the vector function.

 9. rstd − kst 2 2 , 3, 1yt 2l
 10. rstd − ke2t, t 2 t 3, ln tl

 11. rstd − t 2 i 1 cosst 2d j1 sin2t k

 12. rstd −
1

1 1 t
 i 1

t
1 1 t

 j1
t 2

1 1 t
 k

 13. rstd − t sin t i 1 e t cos t j1 sin t cos t k

 14. rstd − sin2 at i 1 te bt j1 cos2ct k

 15. rstd − a 1 t b 1 t 2 c

 16. rstd − t a 3 sb 1 t cd

17–20 Find the unit tangent vector Tstd at the point with the 
given value of the parameter t.

 17. rstd − k t 2 2 2t, 1 1 3t, 13t 3 1 1
2t 2l  , t − 2

 18. rstd − ktan21 t, 2e 2 t, 8te t l, t − 0

 19. rstd − cos t i 1 3t j1 2 sin 2t k,  t − 0

 20. rstd − sin2 t i 1 cos2 t j1 tan2 t k,  t − !y4

 21. If rstd − kt, t 2, t 3 l, find r9std, Ts1d, r0std, and r9std 3 r0std.

 22. If rstd − ke 2 t, e22 t, te 2 t l, find Ts0d, r0s0d, and r9std ? r0std.

23–26 Find parametric equations for the tangent line to the curve 
with the given parametric equations at the specified point.

 23. x − t 2 1 1, y − 4st , z − e t 22t; s2, 4, 1d

 24. x − lnst 1 1d, y − t cos 2t, z − 2 t; s0, 0, 1d

 25. x − e2t cos t,  y − e2t sin t,  z − e2t;  s1, 0, 1d

 26. x − st 2 1 3 ,  y − lnst 2 1 3d,  z − t;  s2, ln 4, 1d

 27.  Find a vector equation for the tangent line to the curve of 
intersection of the cylinders x 2 1 y 2 − 25 and y 2 1 z 2 − 20 
at the point s3, 4, 2d.

 28.  Find the point on the curve rstd − k2 cos t, 2 sin t, e t l,  
0 < t < !, where the tangent line is parallel to the plane 
s3 x 1 y − 1.

29–31 Find parametric equations for the tangent line to the curve 
with the given parametric equations at the specified point. Illus-
trate by graphing both the curve and the tangent line on a common 
screen.

 29.  x − t, y − e2t, z − 2t 2 t 2;  s0, 1, 0d

 30. x − 2 cos t, y − 2 sin t, z − 4 cos 2t;  ss3 , 1, 2d
 31. x − t cos t, y − t, z − t sin t;  s2!, !, 0d

 32. (a)  Find the point of intersection of the tangent lines to the 
curve rstd − ksin ! t, 2 sin ! t, cos ! tl at the points 
where t − 0 and t − 0.5.

 (b) Illustrate by graphing the curve and both tangent lines.

 33.  The curves r1std − kt, t 2, t 3l and r2std − ksin t, sin 2t, tl 
intersect at the origin. Find their angle of intersection correct 
to the nearest degree.

CAS

;
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 SECTION 13.3  Arc Length and Curvature 861

 34.  At what point do the curves r1std − kt, 1 2 t, 3 1 t 2l and 
r2ssd − k3 2 s, s 2 2, s 2 l intersect? Find their angle of 
intersection correct to the nearest degree.

35–40 Evaluate the integral.

 35. y2

0
 st i 2 t 3 j1 3t 5 kd dt

 36. y4

1
 (2t 3y2 i 1 st 1 1dst  k) dt

 37. y1

0
 S 1

t 1 1
 i 1

1
t 2 1 1

 j1
t

t 2 1 1
 kD dt

 38. y!y4

0
 ssec t tan t i 1 t cos 2t j1 sin2  2t cos 2t kd dt

 39. y ssec2 t i 1 tst 2 1 1d3 j1 t 2 ln t kd dt

 40. y Ste 2t i 1
t

1 2 t
 j1

1

s1 2 t 2  kD dt

 41. Find rstd if r9std − 2t i 1 3t 2 j1 st  k and rs1d − i 1 j.

 42.  Find rstd if r9std − t i 1 e t j1 te t k and rs0d − i 1 j1 k.

 43. Prove Formula 1 of Theorem 3.

 44. Prove Formula 3 of Theorem 3.

 45. Prove Formula 5 of Theorem 3.

 46. Prove Formula 6 of Theorem 3.

 47.  If ustd − ksin t, cos t, tl and vstd − kt, cos t, sin tl, use  
Formula 4 of Theorem 3 to find 

d
dt

fustd ? vstdg

 48.  If u and v are the vector functions in Exercise 47, use For- 
mula 5 of Theorem 3 to find 

d
dt

fustd 3 vstdg

 49.  Find f 9s2d, where f std − ustd ? vstd, us2d − k1, 2, 21l, 
u9s2d − k3, 0, 4l, and vstd − kt, t 2, t 3l.

 50.  If rstd − ustd 3 vstd, where u and v are the vector functions 
in Exercise 49, find r9s2d.

 51.  If rstd − a cos "t 1 b sin "t, where a and b are constant 
vectors, show that rstd 3 r9std − "a 3 b.

 52.  If r is the vector function in Exercise 51, show that 
r 0std 1 "2rstd − 0.

 53. Show that if r is a vector function such that r0 exists, then

d
dt

 frstd 3 r9stdg − rstd 3 r0std

 54. Find an expression for 
d
dt

 fustd ? svstd 3 wstddg.

 55. If rstd ± 0, show that 
d
dt

 | rstd | −
1

| rstd |  rstd ? r9std.

  [Hint: | rstd |2 − rstd ? rstd]

 56.  If a curve has the property that the position vector rstd is 
always perpendicular to the tangent vector r9std, show that  
the curve lies on a sphere with center the origin.

 57. If ustd − rstd ? fr9std 3 r0stdg, show that

u9std − rstd ? fr9std 3 r-stdg

 58.  Show that the tangent vector to a curve defined by a vector 
function rstd points in the direction of increasing t.  
[Hint: Refer to Figure 1 and consider the cases h . 0 and 
h , 0 separately.]

Length of a Curve
In Section 10.2 we defined the length of a plane curve with parametric equations x − f std, 
y − tstd, a < t < b, as the limit of lengths of inscribed polygons and, for the case where 
f 9 and t9 are continuous, we arrived at the formula

1   L − yb

a
 sf f 9stdg2 1 ft9stdg2  dt − yb

a
 ÎS dx

dt D2

1 S dy
dt D2 

 dt 

The length of a space curve is defined in exactly the same way (see Figure 1). Suppose 
that the curve has the vector equation rstd − k f std, tstd, hstdl, a < t < b, or, equivalently, 
the parametric equations x − f std, y − tstd, z − hstd, where f 9, t9, and h9 are continu-
ous. If the curve is traversed exactly once as t increases from a to b, then it can be shown 

0

z

x
y

FIGURE 1  
The length of a space curve is the limit 
of lengths of inscribed polygons.
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868 CHAPTER 13  Vector Functions

1–6 Find the length of the curve.

 1. rstd − k t, 3 cos t, 3 sin t l,  25 < t < 5

 2. rstd − k2t, t 2, 13 t 3l ,  0 < t < 1

 3. rstd − s2 t i 1 e t j1 e2t k,  0 < t < 1

 4. rstd − cos t i 1 sin t j1 ln cos t k,  0 < t < !y4

 5. rstd −  i 1 t 2 j1 t 3 k,  0 < t < 1

 6. rstd − t 2 i 1 9t j1 4t 3y2 k, 1 < t < 4

7–9 Find the length of the curve correct to four decimal places. 
(Use a calculator to approximate the integral.)

 7. rstd − k t 2, t 3, t 4 l,  0 < t < 2

 8. rstd − k t, e2t, te2t l,  1 < t < 3

 9. rstd − kcos ! t, 2t, sin 2!tl, from s1, 0, 0d to s1, 4, 0d

 10.  Graph the curve with parametric equations x − sin t, 
y − sin 2t, z − sin 3t. Find the total length of this curve  
correct to four decimal places.

 11.  Let C be the curve of intersection of the parabolic cylinder 
x 2 − 2y and the surface 3z − xy. Find the exact length of C 
from the origin to the point s6, 18, 36d.

 12.  Find, correct to four decimal places, the length of the curve  
of intersection of the cylinder 4x 2 1 y 2 − 4 and the plane 
x 1 y 1 z − 2.

13–14 (a) Find the arc length function for the curve measured 
from the point P in the direction of increasing t and then 
reparametrize the curve with respect to arc length starting from 
P, and (b) find the point 4 units along the curve (in the direction 
of increasing t) from P.

 13. rstd − s5 2 td i 1 s4t 2 3d j1 3t k, Ps4, 1, 3d

 14. rstd − e t sin t i 1 e t cos t j1 s2 e t k, P(0, 1, s2 )

 15.  Suppose you start at the point s0, 0, 3d and move 5 units 
along the curve x − 3 sin t, y − 4t, z − 3 cos t in the posi-
tive direction. Where are you now?

 16. Reparametrize the curve

rstd − S 2
t 2 1 1

2 1D i 1
2t

t 2 1 1
 j

   with respect to arc length measured from the point (1, 0) 
in the direction of increasing t. Express the reparametriza-
tion in its simplest form. What can you conclude about the 
curve?

;

17–20 
(a) Find the unit tangent and unit normal vectors Tstd and Nstd.
(b) Use Formula 9 to find the curvature.

 17. rstd − k t, 3 cos t, 3 sin t l

 18. rstd − kt 2, sin t 2 t cos t, cos t 1 t sin t l,  t . 0

 19. rstd − k s2 t, e t, e2t l
 20. rstd − k t, 12 t 2, t 2l

21–23 Use Theorem 10 to find the curvature.

 21. rstd − t 3 j1 t 2 k

 22. rstd − t i 1 t 2 j1 e t k

 23. rstd − s6 t 2 i 1 2t j1 2t 3 k

 24.  Find the curvature of rstd − k t 2, ln t, t ln t l at the  
point s1, 0, 0d.

 25.  Find the curvature of rstd − k t, t 2, t 3 l at the point (1, 1, 1).

 26.  Graph the curve with parametric equations x − cos t, 
y − sin t, z − sin 5t and find the curvature at the  
point s1, 0, 0d.

27–29 Use Formula 11 to find the curvature.

 27. y − x 4 28. y − tan x 29. y − xe x

30–31 At what point does the curve have maximum curvature? 
What happens to the curvature as x l `?

 30. y − ln x 31. y − e x

 32.  Find an equation of a parabola that has curvature 4 at the  
origin.

 33. (a)  Is the curvature of the curve C shown in the figure 
greater at P or at Q? Explain.

 (b)  Estimate the curvature at P and at Q by sketching the  
osculating circles at those points.

1

1 x0

y P

Q

C

;
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 SECTION 13.3  Arc Length and Curvature 869

34–35 Use a graphing calculator or computer to graph both the 
curve and its curvature function "sxd on the same screen. Is the 
graph of " what you would expect?

 34. y − x 4 2 2x 2 35. y − x22

36–37 Plot the space curve and its curvature function "std.  
Comment on how the curvature reflects the shape of the curve.

 36. rstd − k t 2 sin t, 1 2 cos t, 4 cossty2d l,  0 < t < 8!

 37. rstd − k tet, e2t, s2 tl ,  25 < t < 5

38–39 Two graphs, a and b, are shown. One is a curve y − f sxd 
and the other is the graph of its curvature function y − "sxd. 
Identify each curve and explain your choices.

 38.   39. 
y

x

a
b

 

y

x

a
b

 40. (a)  Graph the curve rstd − ksin 3t, sin 2t, sin 3t l. At how 
many points on the curve does it appear that the curva-
ture has a local or absolute maximum?

 (b)  Use a CAS to find and graph the curvature function. 
Does this graph confirm your conclusion from part (a)?

 41.  The graph of rstd − k t 2 3
2 sin t, 1 2 3

2 cos t, tl  is shown 
in Figure 13.1.12(b). Where do you think the curvature is 
largest? Use a CAS to find and graph the curvature function. 
For which values of t is the curvature largest?

 42.  Use Theorem 10 to show that the curvature of a plane para-
metric curve x − f std, y − tstd is

" − | x? y?? 2 y? x?? |
fx? 2 1 y? 2 g3y2

  where the dots indicate derivatives with respect to t.

43–45 Use the formula in Exercise 42 to find the curvature.

 43. x − t 2,  y − t 3

 44. x − a cos #t,  y − b sin #t

 45. x − e t cos t,  y − e t sin t

 46.  Consider the curvature at x − 0 for each member of the 
family of functions f sxd − e cx. For which members is "s0d 
largest?

;

CAS

CAS

CAS

47–48 Find the vectors T, N, and B at the given point.

 47. rstd − k t 2, 23 t 3, tl , s1, 23, 1d
 48. rstd − kcos t, sin t, ln cos t l,   s1, 0, 0d

49–50 Find equations of the normal plane and osculating plane 
of the curve at the given point.

 49. x − sin 2t, y − 2cos 2t, z − 4t; s0, 1, 2!d

 50. x − ln t, y − 2t, z − t 2; s0, 2, 1d

 51.  Find equations of the osculating circles of the ellipse 
9x 2 1 4y 2 − 36 at the points s2, 0d and s0, 3d. Use a graph-
ing calculator or computer to graph the ellipse and both 
osculating circles on the same screen.

 52.  Find equations of the osculating circles of the parabola 
y − 1

2 x 2 at the points s0, 0d and s1, 12 d. Graph both oscu-
lating circles and the parabola on the same screen.

 53.  At what point on the curve x − t 3, y − 3t, z − t 4 is the  
normal plane parallel to the plane 6x 1 6y 2 8z − 1?

 54.  Is there a point on the curve in Exercise 53 where the  
oscu lating plane is parallel to the plane x 1 y 1 z − 1?  
[Note: You will need a CAS for differentiating, for simplify-
ing, and for computing a cross product.]

 55.  Find equations of the normal and osculating planes of the 
curve of intersection of the parabolic cylinders x − y 2 and 
z − x 2 at the point s1, 1, 1d.

 56.  Show that the osculating plane at every point on the curve
   rstd − k t 1 2, 1 2 t, 12t 2l  is the same plane. What can you 

conclude about the curve?

 57.  Show that at every point on the curve

rstd − ke t cos t, e t sin t, e t l

   the angle between the unit tangent vector and the z-axis is 
the same. Then show that the same result holds true for the 
unit normal and binormal vectors.

 58.  The rectifying plane of a curve at a point is the plane that 
contains the vectors T and B at that point. Find the recti- 
fying plane of the curve rstd − sin t i 1 cos t j1 tan t k at 
the point (s2 y2, s2 y2, 1).

 59.  Show that the curvature " is related to the tangent and  
normal vectors by the equation

dT
ds

− "N

 60.  Show that the curvature of a plane curve is " − | d$yds |, 
where $ is the angle between T and i; that is, $ is the angle 
of inclination of the tangent line. (This shows that the  
definition of curvature is consistent with the definition for 
plane curves given in Exercise 10.2.69.)

;

;

CAS
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870 CHAPTER 13  Vector Functions

 64.  Show that the circular helix rstd − ka cos t, a sin t, bt l,  
where a and b are positive constants, has constant curvature 
and constant torsion. [Use the result of Exercise 63(d).]

 65.  Use the formula in Exercise 63(d) to find the torsion of the 
curve rstd − k t, 12t 2, 13t 3l .

 66.  Find the curvature and torsion of the curve x − sinh t, 
y − cosh t, z − t at the point s0, 1, 0d.

 67.  The DNA molecule has the shape of a double helix (see  
Figure 3 on page 850). The radius of each helix is about 
10 angstroms (1 Å − 1028 cm). Each helix rises about 34 Å 

  during each complete turn, and there are about 2.9 3 108  
complete turns. Estimate the length of each helix.

 68.  Let’s consider the problem of designing a railroad track to 
make a smooth transition between sections of straight track. 
Existing track along the negative x-axis is to be joined 
smoothly to a track along the line y − 1 for x > 1.

 (a)  Find a polynomial P − Psxd of degree 5 such that the 
function F defined by

Fsxd − H0
Psxd
1

if x < 0
if 0 , x , 1
if x > 1

   is continuous and has continuous slope and continuous  
curvature.

 (b)  Graph F.;

 61. (a)  Show that dByds is perpendicular to B.
 (b) Show that dByds is perpendicular to T.
 (c)  Deduce from parts (a) and (b) that dByds − 2%ssdN  

for some number %ssd called the torsion of the curve.  
(The torsion measures the degree of twisting of a curve.)

 (d) Show that for a plane curve the torsion is % ssd − 0.

 62.  The following formulas, called the Frenet-Serret formulas,  
are of fundamental importance in differential geometry:

   1. dTyds − "N

   2. dNyds − 2"T 1 %B

   3. dByds − 2%N

  (Formula 1 comes from Exercise 59 and Formula 3 comes 
from Exercise 61.) Use the fact that N − B 3 T to  
deduce For mula 2 from Formulas 1 and 3.

 63.  Use the Frenet-Serret formulas to prove each of the follow- 
ing. (Primes denote derivatives with respect to t. Start as in  
the proof of Theorem 10.)

 (a) r0 − s0T 1 "ss9d2 N

 (b) r9 3 r0 − "ss9d3 B

 (c) r- − f s- 2 "2ss9d3 g T 1 f 3"s9s0 1 "9ss9d2  g N 1 "%ss9d3 B

 (d) % −
s r9 3 r0 d ? r-

| r9 3 r0 |2

In this section we show how the ideas of tangent and normal vectors and curvature can 
be used in physics to study the motion of an object, including its velocity and accelera-
tion, along a space curve. In particular, we follow in the footsteps of Newton by using 
these methods to derive Kepler’s First Law of planetary motion.

Suppose a particle moves through space so that its position vector at time t is rstd. 
Notice from Figure 1 that, for small values of h, the vector

1   
rst 1 hd 2 rstd

h
 

approximates the direction of the particle moving along the curve rstd. Its magnitude mea- 
sures the size of the displacement vector per unit time. The vector (1) gives the average 
velocity over a time interval of length h and its limit is the velocity vector vstd at time t:

2   vstd − lim 
h l 0

 
rst 1 hd 2 rstd

h
− r9std 

Thus the velocity vector is also the tangent vector and points in the direction of the tan-
gent line.

The speed of the particle at time t is the magnitude of the velocity vector, that is, 
| vstd |. This is appropriate because, from (2) and from Equation 13.3.7, we have

| vstd | − | r9std | −
ds
dt

− rate of change of distance with respect to time

r(t+h)-r(t)
h

O
C

P
Qrª(t)

r(t+h)
r(t)

x

z

y

FIGURE 1
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878 CHAPTER 13  Vector Functions

 1.  The table gives coordinates of a particle moving through  
space along a smooth curve.

 (a)  Find the average velocities over the time intervals  
[0, 1], [0.5, 1], [1, 2], and [1, 1.5].

 (b) Estimate the velocity and speed of the particle at t − 1.

t x y z

0 2.7 9.8 3.7
0.5 3.5 7.2 3.3
1.0 4.5 6.0 3.0
1.5 5.9 6.4 2.8
2.0 7.3 7.8 2.7

 2.  The figure shows the path of a particle that moves with  
position vector rstd at time t.

 (a)  Draw a vector that represents the average velocity of  
the particle over the time interval 2 < t < 2.4.

 (b)  Draw a vector that represents the average velocity over  
the time interval 1.5 < t < 2.

 (c) Write an expression for the velocity vector vs2d.
 (d)  Draw an approximation to the vector vs2d and estimate  

the speed of the particle at t − 2.

y

x0 21

2

1

r(2.4)
r(2)

r(1.5)

3–8 Find the velocity, acceleration, and speed of a particle with  
the given position function. Sketch the path of the particle and  
draw the velocity and acceleration vectors for the specified value  
of t.

 3. rstd − k21
2 t 2, tl ,  t − 2

 4. rstd − kt 2, 1yt 2l,  t − 1

 5. rstd − 3 cos t i 1 2 sin t j,  t − !y3

 6. rstd − e t i 1 e 2 t j,  t − 0

 7. rstd − t i 1 t 2 j1 2 k,  t − 1

 8. rstd − t i 1 2 cos t j1 sin t k,  t − 0

 9–14 Find the velocity, acceleration, and speed of a particle with 
the given position function.

 9. rstd − k t 2 1 t, t 2 2 t, t 3l

 10. rstd − k2 cos t, 3t, 2 sin t l

 11. rstd − s2
  t i 1 e t j1 e2t k

 12. rstd − t 2 i 1 2t j1 ln t k

 13. rstd − e tscos t i 1 sin t j1 t kd

 14. rstd − k t 2, sin t 2 t cos t, cos t 1 t sin t l ,  t > 0

15–16 Find the velocity and position vectors of a particle that has  
the given acceleration and the given initial velocity and position.

 15. astd − 2 i 1 2t k,  vs0d − 3 i 2 j,  rs0d − j1 k

 16. astd − sin t i 1 2 cos t j1 6t k,  
  vs0d − 2k,  rs0d − j2 4 k

17–18
 (a)  Find the position vector of a particle that has the given 

acceler ation and the specified initial velocity and position.
 (b) Use a computer to graph the path of the particle.

 17. astd − 2t i 1 sin t j1 cos 2t k,  vs0d − i,  rs0d − j

 18. astd − t i 1 e t j1 e2t k,  vs0d − k,  rs0d − j1 k

 19.  The position function of a particle is given by 
rstd − k t 2, 5t, t 2 2 16t l . When is the speed a minimum?

 20.  What force is required so that a particle of mass m has the 
position function rstd − t 3 i 1 t 2 j1 t 3 k?

 21.  A force with magnitude 20 N acts directly upward from the  
xy-plane on an object with mass 4 kg. The object starts at the 
origin with initial velocity vs0d − i 2 j. Find its position  
function and its speed at time t.

 22.  Show that if a particle moves with constant speed, then the 
velocity and acceleration vectors are orthogonal.

 23.  A projectile is fired with an initial speed of 200 mys and  
angle of elevation 60°. Find (a) the range of the projectile,  
(b) the maximum height reached, and (c) the speed at impact.

 24.  Rework Exercise 23 if the projectile is fired from a position 
100 m above the ground.

 25.  A ball is thrown at an angle of 45° to the ground. If the ball 
lands 90 m away, what was the initial speed of the ball?

 26.  A projectile is fired from a tank with initial speed 400 mys.  
Find two angles of elevation that can be used to hit a target 
3000 m away.

 27.  A rifle is fired with angle of elevation 36°. What is the muzzle 
speed if the maximum height of the bullet is 1600 ft?

 28.  A batter hits a baseball 3 ft above the ground toward the  
center field fence, which is 10 ft high and 400 ft from home 
plate. The ball leaves the bat with speed 115 ftys at an  
angle 508 above the horizontal. Is it a home run? (In other 
words, does the ball clear the fence?)

;
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 29.  A medieval city has the shape of a square and is protected  
by walls with length 500 m and height 15 m. You are the 
commander of an attacking army and the closest you can 
get to the wall is 100 m. Your plan is to set fire to the city by 
cat apulting heated rocks over the wall (with an initial speed 
of 80 mys). At what range of angles should you tell your 
men to set the catapult? (Assume the path of the rocks is 
perpendicular to the wall.)

 30.  Show that a projectile reaches three-quarters of its maxi-
mum height in half the time needed to reach its maximum 
height.

 31.  A ball is thrown eastward into the air from the origin (in  
the direction of the positive x-axis). The initial velocity is 
50 i 1 80 k, with speed measured in feet per second. The 
spin of the ball results in a southward acceleration of  
4 ftys2, so the acceleration vector is a − 24 j2 32 k. 
Where does the ball land and with what speed?

 32.  A ball with mass 0.8 kg is thrown southward into the air 
with a speed of 30 mys at an angle of 30° to the ground. 
A west wind applies a steady force of 4 N to the ball in an 
easterly direction. Where does the ball land and with what 
speed?

 33.  Water traveling along a straight portion of a river normally 
flows fastest in the middle, and the speed slows to almost 
zero at the banks. Consider a long straight stretch of river 
flowing north, with parallel banks 40 m apart. If the maxi-
mum water speed is 3 mys, we can use a quadratic function 
as a basic model for the rate of water flow x units from the 
west bank: f sxd − 3

400 xs40 2 xd.
 (a)  A boat proceeds at a constant speed of 5 mys from a 

point A on the west bank while maintaining a heading 
perpendicular to the bank. How far down the river on 
the opposite bank will the boat touch shore? Graph the 
path of the boat.

 (b)  Suppose we would like to pilot the boat to land at the 
point B on the east bank directly opposite A. If we 
maintain a constant speed of 5 mys and a constant head-
ing, find the angle at which the boat should head. Then 
graph the actual path the boat follows. Does the path 
seem realistic?

 34.  Another reasonable model for the water speed of the river 
in Exercise 33 is a sine function: f sxd − 3 sins!xy40d. If 
a boater would like to cross the river from A to B with con-
stant heading and a constant speed of 5 mys, determine the 
angle at which the boat should head.

 35.  A particle has position function rstd. If r9std − c 3 rstd,  
where c is a constant vector, describe the path of the  
particle.

 36. (a)  If a particle moves along a straight line, what can you 
say about its acceleration vector?

 (b)  If a particle moves with constant speed along a curve, 
what can you say about its acceleration vector?

;

 37–40 Find the tangential and normal components of the 
acceler ation vector.

 37. rstd − st 2 1 1d i 1 t 3 j,  t > 0

 38. rstd − 2t 2 i 1 (2
3t 3 2 2t) j

 39. rstd − cos t i 1 sin t j1 t k

 40. rstd − t i 1 2e t j1 e 2 t k

 41–42 Find the tangential and normal components of the 
acceleration vector at the given point.

 41. rstd − ln t i 1 st 2 1 3td j1 4st
  

 k,  s0, 4, 4d

 42. rstd −
1
t

 i 1
1
t 2  j1

1
t 3  k,  s1, 1, 1d

 43.  The magnitude of the acceleration vector a is 10 cmys2. Use 
the figure to estimate the tangential and normal components 
of a.

y

x0

a

 44.  If a particle with mass m moves with position vector  
rstd, then its angular momentum is defined as 
Lstd − mrstd 3 vstd and its torque as t std − mrstd 3 astd.  
Show that L9std − tstd. Deduce that if t std − 0 for all t,  
then Lstd is constant. (This is the law of conservation of 
angular momentum.)

 45. The position function of a spaceship is

rstd − s3 1 td i 1 s2 1 ln td j1 S7 2
4

t 2 1 1D k

   and the coordinates of a space station are s6, 4, 9d. The 
captain wants the spaceship to coast into the space station. 
When should the engines be turned off?

 46.  A rocket burning its onboard fuel while moving through 
space has velocity vstd and mass mstd at time t. If the 
exhaust gases escape with velocity ve relative to the rocket, 
it can be deduced from Newton’s Second Law of Motion 
that

m 
dv
dt

−
dm
dt

 ve 

 (a) Show that vstd − vs0d 2 ln 
ms0d
mstd

 ve.

 (b)  For the rocket to accelerate in a straight line from rest to 
twice the speed of its own exhaust gases, what fraction 
of its initial mass would the rocket have to burn as fuel?
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3.  The period of the earth’s orbit is approximately 365.25 days. Use this fact and Kepler’s Third 
Law to find the length of the major axis of the earth’s orbit. You will need the mass of the sun, 
M − 1.99 3 1030 kg, and the gravitational constant, G − 6.67 3 10211 N ∙m2ykg 2.

4.  It’s possible to place a satellite into orbit about the earth so that it remains fixed above a given 
location on the equator. Compute the altitude that is needed for such a satellite. The earth’s 
mass is 5.98 3 1024 kg; its radius is 6.37 3 106 m. (This orbit is called the Clarke Geosyn-
chronous Orbit after Arthur C. Clarke, who first proposed the idea in 1945. The first such 
satellite, Syncom II, was launched in July 1963.)

CONCEPT CHECK Answers to the Concept Check can be found on the back endpapers.

13 REVIEW

 1.  What is a vector function? How do you find its derivative and 
its integral?

 2.  What is the connection between vector functions and space 
curves?

 3.  How do you find the tangent vector to a smooth curve at a 
point? How do you find the tangent line? The unit tangent  
vector?

 4.  If u and v are differentiable vector functions, c is a scalar, and 
f  is a real-valued function, write the rules for differentiating 
the following vector functions.

 (a) ustd 1 vstd (b) custd (c) f std ustd
 (d) ustd ? vstd (e) ustd 3 vstd (f) us f stdd

 5.  How do you find the length of a space curve given by a vector 
function rstd?

 6. (a) What is the definition of curvature?
 (b) Write a formula for curvature in terms of r9std and T9std.
 (c) Write a formula for curvature in terms of r9std and r0std.
 (d)  Write a formula for the curvature of a plane curve with 

equation y − f sxd.

 7. (a)  Write formulas for the unit normal and binormal vectors of 
a smooth space curve rstd.

 (b)  What is the normal plane of a curve at a point? What is the 
osculating plane? What is the osculating circle?

 8. (a)  How do you find the velocity, speed, and acceleration of a 
particle that moves along a space curve?

 (b)  Write the acceleration in terms of its tangential and normal 
components.

 9. State Kepler’s Laws.

TRUE-FALSE QUIZ

 7.  If Tstd is the unit tangent vector of a smooth curve, then the 
curvature is " − | dTydt |.

 8. The binormal vector is Bstd − Nstd 3 Tstd.

 9.  Suppose f  is twice continuously differentiable. At an inflection 
point of the curve y − f sxd, the curvature is 0.

 10.  If "std − 0 for all t, the curve is a straight line.

 11.  If | rstd | − 1 for all t, then | r9std | is a constant.

 12.  If | rstd | − 1 for all t, then r9std is orthogonal to rstd for all t.

 13.  The osculating circle of a curve C at a point has the same tan-
gent vector, normal vector, and curvature as C at that point.

 14.  Different parametrizations of the same curve result in identical 
tangent vectors at a given point on the curve.

Determine whether the statement is true or false. If it is true, explain 
why. If it is false, explain why or give an example that disproves the 
statement.

 1.  The curve with vector equation rstd − t 3 i 1 2t 3 j1 3t 3 k is  
a line.

 2.  The curve rstd − k0, t 2, 4t l is a parabola.

 3.  The curve rstd − k2t, 3 2 t, 0 l is a line that passes through the 
origin.

 4.  The derivative of a vector function is obtained by differen- 
ti ating each component function.

 5. If ustd and vstd are differentiable vector functions, then

d
dt

 fustd 3 vstdg − u9std 3 v9std

 6. If rstd is a differentiable vector function, then

d
dt | rstd | − | r9std |

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



882 CHAPTER 13  Vector Functions

EXERCISES

 16.  The figure shows the curve C traced by a particle with posi-
tion vector rstd at time t.

 (a)  Draw a vector that represents the average velocity of the 
particle over the time interval 3 < t < 3.2.

 (b) Write an expression for the velocity vs3d.
 (c)  Write an expression for the unit tangent vector Ts3d and 

draw it.

y

x0

C

r(3.2)

r(3)

1

1

 17.  A particle moves with position function 
rstd − t ln t i 1 t  j1 e2t k. Find the velocity, speed, and  
acceleration of the particle.

 18.  Find the velocity, speed, and acceleration of a particle mov-
ing with position function rstd − s2t 2 2 3d i 1 2t j. Sketch 
the path of the particle and draw the position, velocity, and 
acceleration vectors for t − 1.

 19.  A particle starts at the origin with initial velocity 
i 2 j1 3k. Its acceleration is astd − 6t i 1 12t 2 j2 6t k. 
Find its position function.

 20.  An athlete throws a shot at an angle of 458 to the horizontal  
at an initial speed of 43 ftys. It leaves his hand 7 ft above 
the ground.

 (a) Where is the shot 2 seconds later?
 (b) How high does the shot go?
 (c) Where does the shot land?

 21.  A projectile is launched with an initial speed of 40 mys 
from the floor of a tunnel whose height is 30 m. What 
angle of elevation should be used to achieve the maximum 
possible horizontal range of the projectile? What is the 
maximum range?

 22.   Find the tangential and normal components of the accelera-
tion vector of a particle with position function

rstd − t i 1 2t j1 t 2 k

 23.  A disk of radius 1 is rotating in the counterclockwise  
direction at a constant angular speed #. A particle starts at 
the center of the disk and moves toward the edge along a 
fixed radius so that its position at time t, t > 0, is given by 

 1. (a)  Sketch the curve with vector function

rstd − t i 1 cos ! t j1 sin !t k     t > 0

 (b)  Find r9std and r0std.

 2.  Let rstd − ks2 2 t , set 2 1dyt, lnst 1 1dl .
 (a) Find the domain of r.
 (b) Find lim t l 0 rstd.
 (c) Find r9std.

 3.  Find a vector function that represents the curve of intersec-
tion of the cylinder x 2 1 y 2 − 16 and the plane x 1 z − 5.

 4.  Find parametric equations for the tangent line to the curve 
x − 2 sin t, y − 2 sin 2t , z − 2 sin 3t at the point 

   s1, s3 , 2d. Graph the curve and the tangent line on a com-
mon screen.

 5.  If rstd − t 2 i 1 t cos ! t j1 sin ! t k, evaluate y1
0 rstd dt.

 6.  Let C be the curve with equations x − 2 2 t 3, y − 2t 2 1, 
z − ln t. Find (a) the point where C intersects the xz-plane, 
(b) parametric equations of the tangent line at s1, 1, 0d, and 
(c) an equation of the normal plane to C at s1, 1, 0d.

 7.  Use Simpson’s Rule with n − 6 to estimate the length of  
the arc of the curve with equations x − t 2, y − t 3, z − t 4, 
0 < t < 3.

 8.  Find the length of the curve rstd − k2t 3y2, cos 2t, sin 2t l, 
0 < t < 1.

 9.  The helix r1std − cos t i 1 sin t j1 t k intersects the curve 
r2std − s1 1 td i 1 t 2 j1 t 3 k at the point s1, 0, 0d. Find the 
angle of intersection of these curves.

 10.  Reparametrize the curve rstd − e t i 1 e t sin t j1 e t cos t k 
with respect to arc length measured from the point s1, 0, 1d 
in the direction of increasing t.

 11.  For the curve given by rstd − ksin 3t, cos 3t, sin 2tl, 
0 < t < !y2, find

 (a) the unit tangent vector,
 (b) the unit normal vector,
 (c) the unit binormal vector, and
 (d) the curvature.

 12.  Find the curvature of the ellipse x − 3 cos t, y − 4 sin t at 
the points s3, 0d and s0, 4d.

 13. Find the curvature of the curve y − x 4 at the point s1, 1d.

 14.  Find an equation of the osculating circle of the curve 
y − x 4 2 x 2 at the origin. Graph both the curve and its  
osculating circle.

 15.  Find an equation of the osculating plane of the curve 
x − sin 2t, y − t, z − cos 2t at the point s0, !, 1d.

;

;
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shown in the figure. It looks reasonable at first glance. 
Show that the function

Fsxd − H1
s1 2 x 2 

s2 2 x

if x < 0
if 0 , x , 1ys2 

if x > 1ys2 

   is continuous and has continuous slope, but does not 
have continuous curvature. Therefore f  is not an appro-
priate transfer curve.

y

x0

y=x

y=0 transfer curve

1

y

x0

y=F(x)
1

1
œ„2

 (b)  Find a fifth-degree polynomial to serve as a transfer 
curve between the following straight line segments: 
y − 0 for x < 0 and y − x for x > 1. Could this be 
done with a fourth-degree polynomial? Use a graphing 
calculator or computer to sketch the graph of the “con-
nected” function and check to see that it looks like the 
one in the figure.

y

x0

y=x

y=0 transfer curve

1

y

x0

y=F(x)
1

1
œ„2

;

  rstd − tRstd, where

Rstd − cos #t i 1 sin #t j

 (a) Show that the velocity v of the particle is

v − cos #t i 1 sin #t j1 tvd

   where vd − R9std is the velocity of a point on the edge 
of the disk.

 (b) Show that the acceleration a of the particle is

a − 2vd 1 t ad

   where ad − R0std is the acceleration of a point on 
the edge of the disk. The extra term 2vd is called the 
Coriolis acceleration; it is the result of the interaction 
of the rotation of the disk and the motion of the particle. 
One can obtain a physical demonstration of this accel-
eration by walking toward the edge of a moving  
merry-go-round.

 (c)  Determine the Coriolis acceleration of a particle that 
moves on a rotating disk according to the equation

rstd − e2t cos #t i 1 e2t sin #t j

 24.  In designing transfer curves to connect sections of straight 
railroad tracks, it’s important to realize that the accelera-
tion of the train should be continuous so that the reactive 
force exerted by the train on the track is also continuous. 
Because of the formulas for the components of acceleration 
in Section 13.4, this will be the case if the curvature varies 
continuously.

 (a)  A logical candidate for a transfer curve to join existing 
tracks given by y − 1 for x < 0 and y − s2 2 x for 

   x > 1ys2  might be the function f sxd − s1 2 x 2 , 
   0 , x , 1ys2 , whose graph is the arc of the circle 
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