Math 164: Multidimensional Calculus

Final Exam December 15, 2015

NAME (please print legibly):	
Your University ID Number:	
Indicate your instructor with a check in the appropriate box:	

Bobkova	TR 12:30-1:45pm	
Chen	MW 3:25-4:40pm	
Dummit	TR 3:25-4:40pm	
Salur	MWF 09:00-09:50am	

- You are responsible for checking that this exam has all 19 pages.
- No calculators, phones, electronic devices, books, notes are allowed during the exam.
- Show all work and justify all answers. Please sign the pledge below.

Pledge of Honesty

I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.

Signature:

Part A				
QUESTION	VALUE	SCORE		
1	14			
2	12			
3	10			
4	10			
5	12			
6	16			
7	16			
8	10			
TOTAL	100			

I	Part B	
QUESTION	VALUE	SCORE
9	14	
10	14	
11	12	
12	12	
13	12	
14	12	
15	12	
16	12	
TOTAL	100	

Part A

- 1. (14 points) Consider the two planes 4x + y z = 4 and x + 4y z = 1.
- (a) Find the (acute) angle between the planes.

(b) Find a parametrization for the line of intersection of these two planes.

2. (12 points) Find the distance between the two skew lines whose parametrizations are

$$l_1: \langle x, y, z \rangle = \langle 1, 0, 0 \rangle + t \langle -2, 1, 0 \rangle$$

$$l_2: \left\langle x,y,z\right\rangle \ = \ \left\langle 0,1,1\right\rangle + s\left\langle 2,-1,1\right\rangle.$$

3. (10 points) A particle travels a total distance of 26π along the parametric curve

$$\mathbf{r}(t) = (5\sin t)\mathbf{i} + (5\cos t)\mathbf{j} + 12t\mathbf{k}$$

from the starting point $(0, -5, 12\pi)$. Find its new location.

4. (10 points) Evaluate the limit

$$\lim_{(x,y)\to(0,0)} \frac{x^2y^3}{x^4 + y^6}$$

or show that it does not exist.

5. (12 points) Find the linearization of the function

$$f(x,y) = \sqrt{12 - x^2 - 7y^2}$$

at (x,y) = (2,1), and then use it to find the approximate value of f(2.05,0.98).

6. (16 points) Find the critical points of the function

$$f(x,y) = x^2y - 8y^2 - x^2$$

and classify each of them as a local minimum, local maximum, or saddle point.

7. (16 points) Calculate the integral $\iint_R y \, dA$ where R is the (finite) region lying between the curves $x = y^2$ and y = x - 2.

- **8.** (10 points) Circle the correct response for the following questions (no work is required, and there is no partial credit):
- (a) The result obtained by reversing the order of integration in the iterated double integral

$$\int_0^1 \int_x^2 x \, dy \, dx$$

is

$$(i) \int_0^1 \int_x^2 x \, dx \, dy$$

(iv)
$$\int_0^1 \int_y^2 x \, dx \, dy + \int_1^2 \int_0^y x \, dx \, dy$$

(ii)
$$\int_0^2 \int_0^y x \, dx \, dy$$

(v)
$$\int_0^1 \int_0^y x \, dx \, dy + \int_1^2 \int_0^1 x \, dx \, dy$$

(iii)
$$\int_{x}^{2} \int_{0}^{1} x \, dx \, dy$$

(vi)
$$\int_0^1 \int_0^2 x \, dx \, dy + \int_1^2 \int_y^2 x \, dx \, dy$$

(b) In polar coordinates, the integral

$$\int_{-2}^{0} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} x \, dy \, dx$$

is

(i)
$$\int_{\pi}^{2\pi} \int_{0}^{2} r^{2} \cos \theta \, dr \, d\theta$$

(iv)
$$\int_{-\pi/2}^{\pi/2} \int_{0}^{2} r \cos \theta \, dr \, d\theta$$

(ii)
$$\int_{\pi/2}^{3\pi/2} \int_{0}^{2} r^{2} \cos \theta \, dr \, d\theta$$

$$(v) \int_{\pi/2}^{3\pi/2} \int_0^2 r \cos\theta \, dr \, d\theta$$

(iii)
$$\int_0^{2\pi} \int_0^2 r^2 \cos\theta \, dr \, d\theta$$

(vi)
$$\int_0^{2\pi} \int_0^2 r \cos\theta \, dr \, d\theta$$

Part B

9. (14 points) Evaluate the triple integral $\iiint_E x \ dV$, where E is the solid tetrahedron bounded by the four planes x = 0, y = 0, z = 0 and x + y + z = 1, whose vertices are (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1).

10. (14 points) Evaluate the integral

$$\int_0^1 \int_0^{\sqrt{1-x^2}} \int_{-\sqrt{1-x^2-y^2}}^{\sqrt{1-x^2-y^2}} \sqrt{x^2+y^2+z^2} \, dz \, dy \, dx.$$

11. (12 points) Evaluate the line integral $\int_C (x-y+z+2) ds$, where C is the straight line segment from (0,1,1) to (1,0,1).

12. (12 points) Let f be a scalar function and \mathbf{F} be a vector field. For each expression, identify whether it is a scalar function, a vector field, or nonsense by circling the appropriate response (no work is required, and there is no partial credit). Note that $\operatorname{grad}(f) = \nabla f$ denotes the gradient of f.

• $\operatorname{curl}(f)$	Scalar function	Vector field	Nonsense
• $grad(f)$	Scalar function	Vector field	Nonsense
$\bullet \operatorname{div}(\mathbf{F})$	Scalar function	Vector field	Nonsense
• $\operatorname{curl}(\operatorname{grad}(f))$	Scalar function	Vector field	Nonsense
ullet grad($f F$)	Scalar function	Vector field	Nonsense
$ \bullet \ \operatorname{grad}(\operatorname{div}(\mathbf{F})) $	Scalar function	Vector field	Nonsense
• $\operatorname{div}(\operatorname{grad}(f))$	Scalar function	Vector field	Nonsense
• $\operatorname{grad}(\operatorname{div}(f))$	Scalar function	Vector field	Nonsense
\bullet curl(curl(\mathbf{F}))	Scalar function	Vector field	Nonsense
$\bullet \operatorname{div}(\operatorname{div}(\mathbf{F}))$	Scalar function	Vector field	Nonsense
• $(\operatorname{grad}(f)) \times (\operatorname{div}(\mathbf{F}))$	Scalar function	Vector field	Nonsense
• $\operatorname{div}(\operatorname{curl}(\operatorname{grad}(f))))$	Scalar function	Vector field	Nonsense

13. (12 points) Find all possible values of the constants a and b such that the vector field

$$\mathbf{F}(x, y, z) = (2bxz^{3} + ayz + 2xy)\mathbf{i} + (2by + ax^{2} + axz)\mathbf{j} + (axy + bz + bx^{2}z^{2})\mathbf{k}$$

is conservative (i.e., that the work done by the field on a particle moving through space does not depend on the particle's path).

14. (12 points) Compute the work integral $\oint_C \mathbf{F} \cdot d\mathbf{r}$, where

$$\mathbf{F}(x,y) = (x^{2015} + x^2y)\mathbf{i} + (xy^2 + 2e^y)\mathbf{j}$$

and the closed path C, oriented counterclockwise, consists of the following three pieces:

 C_1 : the line segment from (0,0) to $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$,

 C_2 : the curve $y = \sqrt{1 - x^2}$ with $-\frac{\sqrt{2}}{2} \le x \le \frac{1}{2}$,

 C_3 : the line segment from $\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ to (0,0).

15. (12 points) Find the surface area of the part of the paraboloid $z = x^2 + y^2$ that lies under the plane z = 4.

16. (12 points) Compute the flux of the vector field

$$\mathbf{F}(x,y,z) = \left(-3x^2y\right)\mathbf{i} + (z-y)\mathbf{j} + (2x)\mathbf{k}$$

through the surface S given by the part of the plane z=1+2x+y lying above the rectangle $0 \le x \le 2, \ 0 \le y \le 3$, with upward orientation.

No test material on this page.

Blank page for scratch work.