Problem 1. Sketch the curve $r = 1 + \cos(\theta)$ and find the length of the curve.

Solution: Looking at the graph, we see the bounds are 0 and 2π . We have $\frac{dr}{d\theta} = -\sin\theta$, so using the formula $L = \int_a^b \sqrt{r^2 + (\frac{dr}{d\theta})^2} d\theta$, we get $L = \int_0^{2\pi} \sqrt{(1 + \cos\theta)^2 + (-\sin\theta)^2} d\theta = \int_0^{2\pi} \sqrt{2 + 2\cos\theta}$ $= \int_0^{2\pi} 2 \left| \cos(\frac{\theta}{2}) \right| d\theta = 2 \int_0^{\pi} 2\cos(\frac{\theta}{2}) = 8\sin(\frac{\theta}{2}) |_0^{\pi} = 8$ where we use $1 + \cos(2\pi)^2 = \cos^2\theta$ to get $1 + \cos(\theta) = 2\cos^2(\frac{\theta}{2})$.

Problem 2. Sketch the five petaled rose $r = cos(5\theta)$. Find the area of the region bounded by one loop of this curve.

Solution: Use the formula $A = \int_{a}^{b} \frac{1}{2}r^{2}d\theta$. One choice of endpoints is $-\frac{\pi}{10}$ and $\frac{\pi}{10}$. Using the formula, we obtain $\int_{-\frac{\pi}{10}}^{\frac{\pi}{10}} \frac{1}{2}\cos^{2}(5\theta)d\theta = \frac{1}{2}\int_{-\frac{\pi}{10}}^{\frac{\pi}{10}} \frac{1+\cos(10\theta)}{2}d\theta$ $= \frac{1}{2}\left(\frac{\theta}{2} + \frac{\sin(10\theta)}{20}\right) = \frac{\pi}{20}$

Problem 3. For each of the following sequences, write out the first four terms. Then determine if the sequences converge and diverge. If they converge, find the limit.

1.
$$a_n = \frac{3+5n^2}{n+n^2}$$

2. $\{\frac{(2n-1)!}{(2n+1)!}\}$
3. $\{n^2e^{-n}\}$

Solution:

1.
$$a_1 = 4, a_2 = \frac{23}{6}, a_3 = 4$$
 and $a_4 = \frac{83}{20}$. $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{5n^2}{n^2} = 5$

2. The trick is to rewrite (2n + 1)! = (2n + 1)(2n)(2n - 1)! so that

$$a_n = \frac{(2n-1)!}{(2n+1)!} = \frac{(2n-1)!}{(2n+1)(2n)(2n-1)!} = \frac{1}{(2n+1)(2n)}$$

The first four terms are $a_1 = \frac{1}{6}, a_2 = \frac{1}{20}, a_3 = \frac{1}{42}, a_4 = \frac{1}{72}$. The limit is

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{(2n+1)(2n)} = 0$$

3. The first four terms are $a_1 = e^{-1}$, $a_2 = 4e^{-2}$, $a_3 = 9e^{-3}$, $a_4 = 16e^{-4}$. The limit requires two applications of L'Hopital's rule

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{2n}{e^n} = \lim_{n \to \infty} \frac{2}{e^n} = 0$$

Problem 4. Define the sequence a_n by $a_1 = \sqrt{2}$ and recursively by $a_{n+1} = \sqrt{2 + a_n}$ for all positive integers n.

- 1. Use induction to show that a_n is a monotonically increasing sequence.
- 2. Show that a_n is bounded by showing that $a_n > 0$ and $a_n < 3$ for all n > 0.
- 3. By the Monotone Sequence Theorem, we know that a_n converges. Find the limit of a_n .

Solution:

- 1. First note that $a_2 = \sqrt{\sqrt{2}+2} > \sqrt{2} = a_1$. The induction argument is to derive $a_{n+1} > a_n$ from $a_n > a_{n-1}$, where the initial step $a_2 > a_1$ is already observed. This would imply that the sequence is monotonically increasing. To check the induction step, note that $a_n > a_{n-1}$ implies $\sqrt{a_n+2} > \sqrt{a_{n-1}+2}$, i.e. $a_{n+1} > a_n$, as desired.
- 2. By the above, we know $a_n > a_0 = \sqrt{2} > 0$. We induct on the statement $a_n < 3$ to show it is true for all n. The base case is n = 1, and $a_n = \sqrt{2} < 3$. Suppose $a_n < 3$. We show $a_{n+1} < 3$. By the recurrence relation

$$a_{n+1} = \sqrt{2+a_n} < \sqrt{2+3} = \sqrt{5} < 3$$

which completes the inductive step.

3. Let $L = \lim_{n \to \infty} a_n$. By taking limits of the recurrence relation, we get

$$\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \sqrt{a_n + 2} = \sqrt{\lim_{n \to \infty} a_n + 2}$$

so $L = \sqrt{L+2}$. Squaring and moving everything to one side we get $L^2 - L - 2 = 0$. This factors as (L-2)(L+1) = 0 so either L = 2 or L = -1. Since $a_n > 0$, $L \ge 0$, so L = 2.