Problem 1. $x = sin(t), \quad y = 1 - cos(t), \quad 0 \le t \le 2\pi$

(a) Sketch the curve by using the parametric equations to plot points. Indicate with arrow the direction in which the curve is traced as t increases.

(b) Eliminate the parameter to find a Cartesian equation of the curve. Solution:

 $x = \sin t, \quad y = 1 - \cos t, \quad 0 \le t \le 2\pi$

	t	0	$\pi/2$	π	$3\pi/2$	2π
(a)	x	0	1	0	-1	0
	y	0	1	2	1	0

(b)
$$x = \sin t, y = 1 - \cos t$$
 [or $y - 1 = -\cos t$] \Rightarrow
 $x^2 + (y - 1)^2 = (\sin t)^2 + (-\cos t)^2 \Rightarrow x^2 + (y - 1)^2 = 1.$

As t varies from 0 to 2π , the circle with center (0, 1) and radius 1 is traced out.

Problem 2. Find parametric equations for the path of a particle that moves along the circle $x^2 + (y - 1)^2 = 4$ in the manner described.

(a) Once around clockwise, starting at $\left(2,1\right)$

(b) Three times around counterclockwise, starting at (2, 1)

(c) Halfway around counterclockwise, starting at (0,3)

Solution:

The circle $x^2 + (y-1)^2 = 4$ has center (0, 1) and radius 2, then it can be represented by $x = 2 \cos t$, $y = 1 + 2 \sin t$, $0 \le t \le 2\pi$. This representation gives us the circle with a counterclockwise orientation starting at (2, 1).

(a) To get a clockwise orientation, we could change the equations to $x = 2\cos t, y = 1 - 2\sin t, 0 \le t \le 2\pi$.

(b) To get three times around in the counterclockwise direction, we use the original equations $x = 2\cos t$, $y = 1 + 2\sin t$ with the domain expanded to $0 \le t \le 6\pi$.

(c) To start at (0,3) using the original equations, we must have $x_1 = 0$; that is, $2\cos t = 0$. Hence, $t = \frac{\pi}{2}$. So we use $x = 2\cos t$, $y = 1 + 2\sin t$, $\frac{\pi}{2} \le t \le \frac{3\pi}{2}$.

Alternatively, if we want t to start at 0 , we could change the equations of the curve. For example, we could use $x = -2 \sin t$, $y = 1 + 2 \cos t$, $0 \le t \le \pi$.

Problem 3. x = t - ln(t), y = t + ln(t)Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$. For which values of t is curve concave upward?

Solution:

 $\begin{aligned} x &= t - \ln t, y = t + \ln t \quad [\text{ note that } t > 0] \Rightarrow \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{1 + 1/t}{1 - 1/t} = \frac{t + 1}{t - 1} \Rightarrow \frac{d^2y}{dx^2} = \frac{\frac{d}{dt} \left(\frac{dy}{dx}\right)}{dx/dt} = \frac{\frac{(t - 1)(1) - (t + 1)(1)}{(t - 1)^2}}{(t - 1)/t} = \frac{-2t}{(t - 1)^3}. \end{aligned}$ The curve is CU when $\frac{d^2y}{dx^2} > 0$, that is, when 0 < t < 1.

Problem 4. Identify the curve by finding a Cartesian equation for the curve

(a) $r = 4sec(\theta)$, (b) $r^2sin(2\theta) = 1$ (c) $r = 5cos(\theta)$ Solution: (a) $r = 4 \sec \theta \Leftrightarrow \frac{r}{\sec \theta} = 4 \Leftrightarrow r \cos \theta = 4 \Leftrightarrow x = 4$, a vertical line. (b)

$$r^{2}\sin 2\theta = 1 \Leftrightarrow r^{2}(2\sin\theta\cos\theta) = 1 \Leftrightarrow 2(r\cos\theta)(r\sin\theta) = 1 \Leftrightarrow 2xy = 1 \Leftrightarrow xy = \frac{1}{2}$$
, a hyperbola

centered at the origin with foci on the line y = x. (c)

$$r = 5\cos\theta \Rightarrow r^2 = 5r\cos\theta \Leftrightarrow x^2 + y^2 = 5x \Leftrightarrow x^2 - 5x + \frac{25}{4} + y^2 = \frac{25}{4} \Leftrightarrow \left(x - \frac{5}{2}\right)^2 + y^2 = \frac{25}{4},$$

a circle of radius $\frac{5}{2}$ centered at $(\frac{5}{2}, 0)$. The first two equations are actually equivalent since $r^2 = 5r \cos \theta \Rightarrow r(r - 5 \cos \theta) = 0 \Rightarrow r = 0$ or $r = 5 \cos \theta$. But $r = 5 \cos \theta$ gives the point r = 0 (the pole) when $\theta = 0$. Thus, the equation $r = 5 \cos \theta$ is equivalent to the compound condition (r = 0 or $r = 5 \cos \theta$).

Problem 5. Find a polar equation for the curve represented by the given Cartesian equation. (a) $y = \sqrt{3}x$, (b) $y = -2x^2$, (c) $x^2 + y^2 = 4y$ Solution: (a) $y = \sqrt{3}x \Rightarrow \frac{y}{x} = \sqrt{3}[x \neq 0] \Rightarrow \tan \theta = \sqrt{3} \Rightarrow \theta = \frac{\pi}{3} \text{ or } \frac{4\pi}{3}$ [either incudes the pole] (b)

$$y = -2x^2 \Rightarrow r\sin\theta = -2(r\cos\theta)^2 \Rightarrow r\sin\theta + 2r^2\cos^2\theta = 0 \Rightarrow r\left(\sin\theta + 2r\cos^2\theta\right) = 0 \Rightarrow$$

r = 0 or $r = -\frac{\sin\theta}{2\cos^2\theta} = -\frac{1}{2}\tan\theta\sec\theta$. r = 0 is included in $r = -\frac{1}{2}\tan\theta\sec\theta$ when $\theta = 0$, so the curve is represented by the single equation $r = -\frac{1}{2}\tan\theta\sec\theta$. (c)

$$x^{2} + y^{2} = 4y \Rightarrow r^{2} = 4r\sin\theta \Rightarrow r^{2} - 4r\sin\theta = 0 \Rightarrow r(r - 4\sin\theta) = 0 \Rightarrow r = 0 \text{ or } r = 4\sin\theta.$$

r=0 is included in $r=4\sin\theta$ when $\theta=0,$ so the curve is represented by the single equation $r=4\sin\theta.$

Problem 6. Find the area of the region that lies inside both curves (a) $r = 3sin(\theta)$, $r = 3cos(\theta)$ (b) $r = 1 + cos(\theta)$, $r = 1 - cos(\theta)$

Solution:

$$3\sin\theta = 3\cos\theta \Rightarrow \frac{3\sin\theta}{3\cos\theta} = 1 \Rightarrow \tan\theta = 1 \Rightarrow \theta = \frac{\pi}{4} \Rightarrow$$
(a)
$$A = 2\int_{0}^{\pi/4} \frac{1}{2}(3\sin\theta)^{2}d\theta = \int_{0}^{\pi/4} 9\sin^{2}\theta d\theta = \int_{0}^{\pi/4} 9\cdot\frac{1}{2}(1-\cos2\theta)d\theta$$

$$= \int_{0}^{\pi/4} \left(\frac{9}{2} - \frac{9}{2}\cos2\theta\right)d\theta = \left[\frac{9}{2}\theta - \frac{9}{4}\sin2\theta\right]_{0}^{\pi/4} = \left(\frac{9\pi}{8} - \frac{9}{4}\right) - (0-0)$$

$$= \frac{9\pi}{8} - \frac{9}{4}$$

$$A = 4 \int_{0}^{\pi/2} \frac{1}{2} (1 - \cos \theta)^{2} d\theta = 2 \int_{0}^{\pi/2} (1 - 2\cos \theta + \cos^{2} \theta) d\theta$$

$$= 2 \int_{0}^{\pi/2} \left[1 - 2\cos \theta + \frac{1}{2} (1 + \cos 2\theta) \right] d\theta$$

$$= 2 \int_{0}^{\pi/2} \left(\frac{3}{2} - 2\cos \theta + \frac{1}{2} \cos 2\theta \right) d\theta = \int_{0}^{\pi/2} (3 - 4\cos \theta + \cos 2\theta) d\theta$$

$$= \left[3\theta - 4\sin \theta + \frac{1}{2}\sin 2\theta \right]_{0}^{\pi/2} = \frac{3\pi}{2} - 4$$

$$r = 1 - \cos \theta$$

$$r = 1 + \cos \theta$$

Problem 7. Find the exact length of the polar curve. (a) $r = e^{\theta/2}$, $0 \le \theta \le \pi/2$ (b) $r = 2(1 + \cos(\theta))$

Solution:

$$L = \int_{0}^{\pi/2} \sqrt{r^{2} + (dr/d\theta)^{2}} d\theta = \int_{0}^{\pi/2} \sqrt{(e^{\theta/2})^{2} + (\frac{1}{2}e^{\theta/2})^{2}} d\theta = \int_{0}^{\pi/2} \sqrt{(e^{\theta/2})^{2} (1 + \frac{1}{4})} d\theta$$

$$= \sqrt{\frac{5}{4}} \int_{0}^{\pi/2} |e^{\theta/2}| d\theta = \frac{\sqrt{5}}{2} \int_{0}^{\pi/2} e^{\theta/2} d\theta = \frac{\sqrt{5}}{2} [2e^{\theta/2}]_{0}^{\pi/2} = \sqrt{5} (e^{\pi/4} - 1)$$

$$L = \int_{a}^{b} \sqrt{r^{2} + (dr/d\theta)^{2}} d\theta = \int_{0}^{2\pi} \sqrt{[2(1 + \cos\theta)]^{2} + (-2\sin\theta)^{2}} d\theta = \int_{0}^{2\pi} \sqrt{4 + 8\cos\theta + 4\cos^{2}\theta +$$