Problem 1. $x = sin(t), \quad y = 1 - cos(t), \quad 0 \le t \le 2\pi$

(a) Sketch the curve by using the parametric equations to plot points. Indicate with arrow the direction in which the curve is traced as t increases.

(b) Eliminate the parameter to find a Cartesian equation of the curve.

Problem 2. Find parametric equations for the path of a particle that moves along the circle $x^2 + (y - 1)^2 = 4$ in the manner described. (a) Once around clockwise, starting at (2, 1)

(b) Three times around counterclockwise, starting at (2, 1)

(c) Halfway around counterclockwise, starting at (0,3)

Problem 3. x = t - ln(t), y = t + ln(t)Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$. For which values of t is curve concave upward?

Problem 4. Identify the curve by finding a Cartesian equation for the curve (a) $r = 4sec(\theta)$, (b) $r^2sin(2\theta) = 1$ (c) $r = 5cos(\theta)$

Problem 5. Find a polar equation for the curve represented by the given Cartesian equation. (a) $y = \sqrt{3}x$, (b) $y = -2x^2$, (c) $x^2 + y^2 = 4y$

Problem 6. Find the area of the region that lies inside both curves (a) $r = 3sin(\theta)$, $r = 3cos(\theta)$ (b) $r = 1 + cos(\theta)$, $r = 1 - cos(\theta)$

Problem 7. Find the exact length of the polar curve. (a) $r = e^{\theta/2}$, $0 \le \theta \le \pi/2$ (b) $r = 2(1 + \cos(\theta))$