
Math 162 - Spring 2025
Workshop 11 Solution
Apr 14 - Apr 18
11.3.Integral Test, 11.4.Comparison Test ,11.5.Alternating Series

Problem 1. Use the Integral Test to determine whether the series is convergent or divergent.
(a)

∑∞
n=1

tan−1(n)
1+n2 . (b)

∑∞
n=2

1
nln(n)

. (c)
∑∞

n=1
1

n2+n3 .

Solution:
(a) The function f(x) = tan−1 x

1+x2 is continuous, positive, and decreasing on (1,∞),

f ′(x) =
(1+x2)

(
1

1+x2

)
−(tan−1 x)(2x)

(1+x2)2
= 1−2x tan−1 x

(1+x2)2
< 0 for2x tan−1 x > 1

f′(x) < 0 when x ≥ 1sotheIntegralTestapplies.∫ ∞

1

tan−1 x

1 + x2
dx = lim

t→∞

∫ t

1

tan−1 x

1 + x2
dx = lim

t→∞

∫ tan−1

tan−1 t

udu

[
u = tan−1, x, du =

dx

1 + x2

]
= lim

t→∞

[
1

2
u2

]tan−1

tann−1

,= lim
t→∞

[
1

2

(
tan−1 t

)2 − 1

2

(
tan−1 1

)2]
=

1

2

(π
2

)2

− 1

2

(π
4

)2

=
3π2
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Since the improper integral is convergent, the serics
∑∞

n=1
tan−1 n
1+n2 is also convergent by the

Integral Test.

(b) f(x) = 1
x lnx

is continuous and positive on [2,∞), and also decreasing since f ′(x) =
− 1+lnx

x2(lnx)2
< 0 for x > 2, so we can use the Integral Test.

∫∞
2

1
x lnx

dx = limt→∞[ln(lnx)]t2 =

limt→∞[ln(ln t)− ln(ln 2)] = ∞, so the series
∑∞

n=2
1

n lnn
diverges.

(c) The function f(x) = 1
x2+x3 = 1

x2 − 1
x
+ 1

x+1
[by partial fractions] is continuous, positive

and decreasing on [1,∞), so the Integral Test applies.∫ ∞

1

f(x)dx = lim
t→∞

∫ t

1

(
1

x2
− 1

x
+

1

x+ 1

)
dx = lim

t→∞

[
−1

x
− lnx+ ln(x+ 1)

]t
1

= lim
t→∞

[
−1

t
+ ln

t+ 1

t
+ 1− ln 2

]
= 0 + 0 + 1− ln 2

The integral converges, so the series
∑∞

n=1
1

n2+n3 converges.

Problem 2. Find the values of p for which the sereies is convergent
(a)

∑∞
n=1 n(1 + n2)p. (b)

∑∞
n=1

ln(n)
np .

Solution:
(a) Clearly the series cannot converge if p ≥ −1

2
, because then limn→∞ n (1 + n2)

p ̸= 0. So



assume p < −1
2
. Then f(x) = x (1 + x2)

p is continuous, positive, and eventually decreasing on
[1,∞), and we can use the Integral Test.∫ ∞

1

x
(
1 + x2

)p
dx = lim

t→∞

[
1

2
· (1 + x2)

p+1

p+ 1

]t

1

=
1

2(p+ 1)
lim
t→∞

[(
1 + t2

)p+1 − 2p+1
]

This limit exists and is finite ⇔ p + 1 < 0 ⇔ p < −1, so the series
∑∞

n=1 n (1 + n2)
p con-

verges whenever p < −1.

(b) If p ≤ 0, limn→∞
lnn
np = ∞ and the series diverges, so assume p > 0.f(x) = lnx

xp is
positive and continuous and f ′(x) < 0 for x > e1/p, so f is eventually decreasing and we can
use the Integral Test. Integration by parts gives

∫∞
1

lnx
xp dx = limt→∞

[
x1−p[(1−p) lnx−1]

(1−p)2

]t
1
( for

p ̸= 1) = 1
(1−p)2

[limt→∞ t1−p[(1− p) ln t− 1] + 1], which exists whenever 1 − p < 0 ⇔ p > 1.
Thus,

∑∞
n=1

lnn
np converges⇔ p > 1.

Problem 3. Use the Direct Comparison Test to determine whether the series converges or di-
verges.
(a)

∑∞
k=1

k·sin2(k)
1+k3

, (b)
∑∞

n=1
n!
nn , (c)

∑∞
n=1

e
1
n

n

Solution:
(a) k sin2 k

1+k3
≤ k

1+k3
< k

k3
= 1

k2
for all k ≥ 1, so

∑∞
k=1

k sin2 k
1+k3

converges by direct comparison with∑∞
k=1

1
k2
, which converges because it is a p-series with p = 2 > 1.

(b) n!
nn = 1·2·3····(n−1)n

n·n·n····n·n ≤ 1
n
· 2
n
· 1 · 1 · · · · 1 for n ≥ 2, so since

∑∞
n=1

2
n2 converges [p = 2 >

1],
∑∞

n=1
n!
nn converges also by the Direct Comparison Test.

(c) e1/n

n
> 1

n
for all n ≥ 1, so

∑∞
n=1

e1/n

n
diverges by direct comparison with the harmonic

series
∑∞

n=1
1
n
.

Problem 4. Use the Limit Comparison Test to determine whether the series converges or di-
verges.
(a)

∑∞
n=1 sin

2
(
1
n

)
, (b)

∑∞
n=1

1

n1+ 1
n
.

Solution:
(a) Use the Limit Comparison Test with an = sin2

(
1
n

)
and bn = 1

n2 :

lim
n→∞

an
bn

= lim
n→∞

sin2
(
1
n

)
1
n2

= lim
n→∞

[
sin

(
1
n

)
1
n

]2

= lim
x→0

(
sinx

x

)2 [
where x =

1

n

]
Now, limx→0

sinx
x

= 1 the squaring function is continuous at x = 1, so limx→0

(
sinx
x

)2
=

12 = 1 > 0 . Since
∑∞

n=1
1
n2 is a convergent p-series [p = 2 > 1], the series

∑∞
n=1 sin

2
(
1
n

)
also

2



converges.

(b) Use the Limit Comparison Testwith an = 1
n1+1/n and bn = 1

n
. limn→∞

an
bn

= limn→∞
n

n1+1/n =

limn→∞
1

n1/n = 1 [since limx→∞ x1/x = 1 by l’Hospital’s Rule], so
∑∞

n=1
1
n
diverges [harmonic

series]⇒
∑∞

n=1
1

n1+1/n diverges.

Problem 5. Test the series for convergence or divergence.
(a)

∑∞
n=1

(−1)nn2

5n
, (b)

∑∞
n=1(−1)n

(√
n+ 1−

√
n
)
, (c)

∑∞
n=1

n cos(nπ)
2n

.

Solution:
(a) bn = n2

5n
> 0 for n ≥ 1. {bn} is decreasing for n ≥ 2 since(

x2

5x

)′

=
5x · 2x− x25x ln 5

(5x)2
=

x5x(2− x ln 5)

(5x)2
=

x(2− x ln 5)

5x
< 0 for x >

2

ln 5
≈ 1.2. Also,

limn→∞ bn = limn→∞
n2

5n
H
= limn→∞

2n
5n ln 5

H
= limn→∞

2
5n(ln 5)2

= 0. Thus, the series
∑∞

n=1(−1)n n2

5n

converges by the Alternating.

(b)bn =
√
n+1−

√
n

1
·
√
n+1+

√
n√

n+1+
√
n
= (n+1)−n√

n+1+
√
n
= 1√

n+1+
√
n
> 0 for n ≥ 1. {bn} is decreasing and

limn→∞ bn = 0, so the series
∑∞

n=1(−1)n(
√
n+ 1−

√
n) converges by the Alternating Series Test.

(c) an = n cosnπ
2n

= (−1)n n
2n

= (−1)nbn. {bn} is decreasing for n ≥ 2 since (x2−x)
′
=

x (−2−x ln 2) + 2−x = 2−x(1 − x ln 2) < 0 for x > 1
ln 2

[≈ 1.4]. Also, limn→∞ bn = 0 since
limx→∞

x
2x

H
= limx→∞

1
2x ln 2

= 0. Thus, the series
∑∞

n=1
n cosnπ

2n
converges by the Alternating

Series Test.

Problem 6. Determine whether the series is absolutely convergent, conditionally convergent, or
divergent
(a)

∑∞
n=1

(−1)n

n
2
3

, (b)
∑∞

n=1
1+2 sin(n)

n3 , (c)
∑∞

n=0(−1)n+1 n2

n2+1
,

Solution:
(a) bn = 1

3√
n2

> 0 for n ≥ 1. {bn} is decreasing for n ≥ 1, and limn→∞
1

3√
n2

= 0, so the se-

ries
∑∞

n=1
(−1)n−1

3√
n2

converges by the Alternating Series Test. Also, observe that
∑∞

n=1

∣∣∣ (−1)n−1

3√
n2

∣∣∣ =∑∞
n=1

1
n2/3 is divergent since it is a p-series with p = 2

3
≤ 1. Thus, the series

∑∞
n=1

(−1)n−1

3√
n2

is
conditionally convergent.

(b) 0 <
∣∣1+2 sinn

n3

∣∣ < 3
n3 for n ≥ 1 and 3

∑∞
n=1

1
n3 is a constant times a convergent p-series

[p = 3 > 1], so
∑∞

n=1

∣∣1+2 sinn
n3

∣∣ converges by direct comparison and the series
∑∞

n=1
1+2 sinn

n3 is
absolutely convergent.
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(c) Since limn→∞
n2

n2+1
= limn→∞

1
1+1/n2 = 1

1+0
= 1 ̸= 0 and limn→∞(−1)n+1 does not exist,

limn→∞(−1)n+1 n2

n2+1
does not exist, so the series

∑∞
n=0(−1)n+1 n2

n2+1
diverges by the Test for Di-

vergence.
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