Problem 1. Use the Integral Test to determine whether the series is convergent or divergent. (a) $\sum_{n=1}^{\infty} \frac{tan^{-1}(n)}{1+n^2}$. (b) $\sum_{n=2}^{\infty} \frac{1}{nln(n)}$. (c) $\sum_{n=1}^{\infty} \frac{1}{n^2+n^3}$.

Solution:

(a) The function $f(x) = \frac{\tan^{-1} x}{1+x^2}$ is continuous, positive, and decreasing on $(1, \infty)$, $f'(x) = \frac{(1+x^2)(\frac{1}{1+x^2}) - (\tan^{-1} x)(2x)}{(1+x^2)^2} = \frac{1-2x\tan^{-1} x}{(1+x^2)^2} < 0 \text{ for } ^{2x} \tan^{-1} x > 1$

 $\mathbf{f}'(x) < 0$ when $x \ge 1$ so the Integral Test applies.

$$\int_{1}^{\infty} \frac{\tan^{-1} x}{1+x^{2}} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{\tan^{-1} x}{1+x^{2}} dx = \lim_{t \to \infty} \int_{\tan^{-1} t}^{\tan^{-1}} u du \left[u = \tan^{-1}, x, du = \frac{dx}{1+x^{2}} \right]$$
$$= \lim_{t \to \infty} \left[\frac{1}{2} u^{2} \right]_{\tan^{-1}}^{\tan^{-1}}, = \lim_{t \to \infty} \left[\frac{1}{2} \left(\tan^{-1} t \right)^{2} - \frac{1}{2} \left(\tan^{-1} 1 \right)^{2} \right] = \frac{1}{2} \left(\frac{\pi}{2} \right)^{2} - \frac{1}{2} \left(\frac{\pi}{4} \right)^{2} = \frac{3\pi^{2}}{32}$$
Since the improved integral is convergent, the series $\sum_{n=1}^{\infty} \left[\tan^{-1} u \right]_{x=1}^{\infty} \left[\tan^{-1} u \right]_{x=1}^{\infty} \left[\tan^{-1} u \right]_{x=1}^{\infty} \left[\frac{\pi}{2} \left(\tan^{-1} u \right)^{2} \right] = \frac{1}{2} \left(\frac{\pi}{2} \right)^{2} - \frac{1}{2} \left(\frac{\pi}{4} \right)^{2} = \frac{3\pi^{2}}{32}$

Since the improper integral is convergent, the series $\sum_{n=1}^{\infty} \frac{\tan^{-1} n}{1+n^2}$ is also convergent by the Integral Test.

(b) $f(x) = \frac{1}{x \ln x}$ is continuous and positive on $[2, \infty)$, and also decreasing since $f'(x) = -\frac{1+\ln x}{x^2(\ln x)^2} < 0$ for x > 2, so we can use the Integral Test. $\int_2^\infty \frac{1}{x \ln x} dx = \lim_{t \to \infty} [\ln(\ln x)]_2^t = \lim_{t \to \infty} [\ln(\ln t) - \ln(\ln 2)] = \infty$, so the series $\sum_{n=2}^\infty \frac{1}{n \ln n}$ diverges.

(c) The function $f(x) = \frac{1}{x^2+x^3} = \frac{1}{x^2} - \frac{1}{x} + \frac{1}{x+1}$ [by partial fractions] is continuous, positive and decreasing on $[1, \infty)$, so the Integral Test applies.

$$\int_{1}^{\infty} f(x)dx = \lim_{t \to \infty} \int_{1}^{t} \left(\frac{1}{x^{2}} - \frac{1}{x} + \frac{1}{x+1}\right) dx = \lim_{t \to \infty} \left[-\frac{1}{x} - \ln x + \ln(x+1)\right]_{1}^{t}$$
$$= \lim_{t \to \infty} \left[-\frac{1}{t} + \ln\frac{t+1}{t} + 1 - \ln 2\right] = 0 + 0 + 1 - \ln 2$$

The integral converges, so the series $\sum_{n=1}^{\infty} \frac{1}{n^2 + n^3}$ converges.

Problem 2. Find the values of p for which the sereies is convergent (a) $\sum_{n=1}^{\infty} n(1+n^2)^p$. (b) $\sum_{n=1}^{\infty} \frac{\ln(n)}{n^p}$.

Solution:

(a) Clearly the series cannot converge if $p \geq -\frac{1}{2}$, because then $\lim_{n\to\infty} n \left(1+n^2\right)^p \neq 0$. So

assume $p < -\frac{1}{2}$. Then $f(x) = x (1 + x^2)^p$ is continuous, positive, and eventually decreasing on $[1, \infty)$, and we can use the Integral Test.

$$\int_{1}^{\infty} x \left(1+x^{2}\right)^{p} dx = \lim_{t \to \infty} \left[\frac{1}{2} \cdot \frac{\left(1+x^{2}\right)^{p+1}}{p+1}\right]_{1}^{t} = \frac{1}{2(p+1)} \lim_{t \to \infty} \left[\left(1+t^{2}\right)^{p+1} - 2^{p+1}\right]_{1}^{t}$$

This limit exists and is finite $\Leftrightarrow p + 1 < 0 \Leftrightarrow p < -1$, so the series $\sum_{n=1}^{\infty} n (1 + n^2)^p$ converges whenever p < -1.

(b) If $p \leq 0, \lim_{n\to\infty} \frac{\ln n}{n^p} = \infty$ and the series diverges, so assume $p > 0.f(x) = \frac{\ln x}{x^p}$ is positive and continuous and f'(x) < 0 for $x > e^{1/p}$, so f is eventually decreasing and we can use the Integral Test. Integration by parts gives $\int_1^\infty \frac{\ln x}{x^p} dx = \lim_{t\to\infty} \left[\frac{x^{1-p}[(1-p)\ln x-1]}{(1-p)^2}\right]_1^t$ (for $p \neq 1$) $= \frac{1}{(1-p)^2} [\lim_{t\to\infty} t^{1-p}[(1-p)\ln t - 1] + 1]$, which exists whenever $1 - p < 0 \Leftrightarrow p > 1$. Thus, $\sum_{n=1}^\infty \frac{\ln n}{n^p}$ converges $\Leftrightarrow p > 1$.

Problem 3. Use the Direct Comparison Test to determine whether the series converges or diverges.

(a) $\sum_{k=1}^{\infty} \frac{k \cdot \sin^2(k)}{1+k^3}$, (b) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$, (c) $\sum_{n=1}^{\infty} \frac{e^{\frac{1}{n}}}{n}$

Solution: (a) $\frac{k \sin^2 k}{1+k^3} \leq \frac{k}{1+k^3} < \frac{k}{k^3} = \frac{1}{k^2}$ for all $k \geq 1$, so $\sum_{k=1}^{\infty} \frac{k \sin^2 k}{1+k^3}$ converges by direct comparison with $\sum_{k=1}^{\infty} \frac{1}{k^2}$, which converges because it is a *p*-series with p = 2 > 1.

(b) $\frac{n!}{n^n} = \frac{1 \cdot 2 \cdot 3 \cdots (n-1)n}{n \cdot n \cdot n \cdots n \cdot n} \leq \frac{1}{n} \cdot \frac{2}{n} \cdot 1 \cdot 1 \cdots 1$ for $n \geq 2$, so since $\sum_{n=1}^{\infty} \frac{2}{n^2}$ converges $[p = 2 > 1], \sum_{n=1}^{\infty} \frac{n!}{n^n}$ converges also by the Direct Comparison Test.

(c) $\frac{e^{1/n}}{n} > \frac{1}{n}$ for all $n \ge 1$, so $\sum_{n=1}^{\infty} \frac{e^{1/n}}{n}$ diverges by direct comparison with the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$.

Problem 4. Use the Limit Comparison Test to determine whether the series converges or diverges. (a) $\sum_{n=1}^{\infty} \sin^2\left(\frac{1}{n}\right)$, (b) $\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$.

Solution:

(a) Use the Limit Comparison Test with $a_n = \sin^2\left(\frac{1}{n}\right)$ and $b_n = \frac{1}{n^2}$:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\sin^2\left(\frac{1}{n}\right)}{\frac{1}{n^2}} = \lim_{n \to \infty} \left[\frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}}\right]^2 = \lim_{x \to 0} \left(\frac{\sin x}{x}\right)^2 \quad \left[\text{ where } x = \frac{1}{n}\right]$$

Now, $\lim_{x\to 0} \frac{\sin x}{x} = 1$ the squaring function is continuous at x = 1, so $\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^2 = 1^2 = 1 > 0$. Since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is a convergent *p*-series [p = 2 > 1], the series $\sum_{n=1}^{\infty} \sin^2\left(\frac{1}{n}\right)$ also

converges.

(b) Use the Limit Comparison Test with $a_n = \frac{1}{n^{1+1/n}}$ and $b_n = \frac{1}{n}$. $\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{n}{n^{1+1/n}} = \lim_{n\to\infty} \frac{1}{n^{1/n}} = 1$ [since $\lim_{x\to\infty} x^{1/x} = 1$ by l'Hospital's Rule], so $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges [harmonic series] $\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^{1+1/n}}$ diverges.

Problem 5. Test the series for convergence or divergence. (a) $\sum_{n=1}^{\infty} \frac{(-1)^n n^2}{5^n}$, (b) $\sum_{n=1}^{\infty} (-1)^n \left(\sqrt{n+1} - \sqrt{n}\right)$, (c) $\sum_{n=1}^{\infty} \frac{n \cos(n\pi)}{2^n}$.

Solution:
(a)
$$b_n = \frac{n^2}{5^n} > 0$$
 for $n \ge 1$. $\{b_n\}$ is decreasing for $n \ge 2$ since
 $\left(\frac{x^2}{5^x}\right)' = \frac{5^x \cdot 2x - x^2 5^x \ln 5}{(5^x)^2} = \frac{x5^x(2 - x \ln 5)}{(5^x)^2} = \frac{x(2 - x \ln 5)}{5^x} < 0$ for $x > \frac{2}{\ln 5} \approx 1.2$. Also,

 $\lim_{n\to\infty} b_n = \lim_{n\to\infty} \frac{n^2}{5^n} \stackrel{H}{=} \lim_{n\to\infty} \frac{2n}{5^n \ln 5} \stackrel{H}{=} \lim_{n\to\infty} \frac{2}{5^n (\ln 5)^2} = 0.$ Thus, the series $\sum_{n=1}^{\infty} (-1)^n \frac{n^2}{5^n}$ converges by the Alternating.

 $(\mathbf{b})b_n = \frac{\sqrt{n+1}-\sqrt{n}}{1} \cdot \frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}} = \frac{(n+1)-n}{\sqrt{n+1}+\sqrt{n}} = \frac{1}{\sqrt{n+1}+\sqrt{n}} > 0 \text{ for } n \ge 1. \quad \{b_n\} \text{ is decreasing and } \lim_{n \to \infty} b_n = 0, \text{ so the series } \sum_{n=1}^{\infty} (-1)^n (\sqrt{n+1}-\sqrt{n}) \text{ converges by the Alternating Series Test. }$

(c) $a_n = \frac{n \cos n\pi}{2^n} = (-1)^n \frac{n}{2^n} = (-1)^n b_n$. $\{b_n\}$ is decreasing for $n \ge 2$ since $(x2^{-x})' = x(-2^{-x}\ln 2) + 2^{-x} = 2^{-x}(1-x\ln 2) < 0$ for $x > \frac{1}{\ln 2} [\approx 1.4]$. Also, $\lim_{n\to\infty} b_n = 0$ since $\lim_{x\to\infty} \frac{x}{2^x} \stackrel{H}{=} \lim_{x\to\infty} \frac{1}{2^x\ln 2} = 0$. Thus, the series $\sum_{n=1}^{\infty} \frac{n \cos n\pi}{2^n}$ converges by the Alternating Series Test.

Problem 6. Determine whether the series is absolutely convergent, conditionally convergent, or divergent

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$
, (b) $\sum_{n=1}^{\infty} \frac{1+2\sin(n)}{n^3}$, (c) $\sum_{n=0}^{\infty} (-1)^{n+1} \frac{n^2}{n^2+1}$,

Solution:

(a) $b_n = \frac{1}{\sqrt[3]{n^2}} > 0$ for $n \ge 1$. $\{b_n\}$ is decreasing for $n \ge 1$, and $\lim_{n\to\infty} \frac{1}{\sqrt[3]{n^2}} = 0$, so the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt[3]{n^2}}$ converges by the Alternating Series Test. Also, observe that $\sum_{n=1}^{\infty} \left|\frac{(-1)^{n-1}}{\sqrt[3]{n^2}}\right| = \sum_{n=1}^{\infty} \frac{1}{n^{2/3}}$ is divergent since it is a *p*-series with $p = \frac{2}{3} \le 1$. Thus, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt[3]{n^2}}$ is conditionally convergent.

(b) $0 < \left|\frac{1+2\sin n}{n^3}\right| < \frac{3}{n^3}$ for $n \ge 1$ and $3\sum_{n=1}^{\infty}\frac{1}{n^3}$ is a constant times a convergent *p*-series [p=3>1], so $\sum_{n=1}^{\infty}\left|\frac{1+2\sin n}{n^3}\right|$ converges by direct comparison and the series $\sum_{n=1}^{\infty}\frac{1+2\sin n}{n^3}$ is absolutely convergent.

(c) Since $\lim_{n\to\infty}\frac{n^2}{n^2+1} = \lim_{n\to\infty}\frac{1}{1+1/n^2} = \frac{1}{1+0} = 1 \neq 0$ and $\lim_{n\to\infty}(-1)^{n+1}$ does not exist, $\lim_{n\to\infty}(-1)^{n+1}\frac{n^2}{n^2+1}$ does not exist, so the series $\sum_{n=0}^{\infty}(-1)^{n+1}\frac{n^2}{n^2+1}$ diverges by the Test for Divergence.