Problem 1. Consider the sequence defined by:

$$a_1 = 1, \quad a_{n+1} = 3 - \frac{1}{a_n}.$$

- Show that the sequence is increasing.
- Show that the sequence is bounded above by 3.
- Deduce that $\{a_n\}$ is convergent and find its limit.

Answer

Step 1: Show that $1 \le a_n < 3$ for all n.

- We proceed by induction. *Base case:* $1 \le a_1 = 1 < 3$.
 - Inductive step: Assume $1 \le a_n < 3$. Then

$$a_{n+1} = 3 - \frac{1}{a_n} < 3$$

since $a_n \geq 1$, and

$$a_{n+1} = 3 - \frac{1}{a_n} \ge 1$$

since $a_n < 3$, completing the induction.

Step 2: Show that the sequence is increasing.

We can do so using induction again, with the base case being $a_1 = 1 \le a_2 = 2$.

Now we assume $a_n \leq a_{n+1}$ and want to show $a_{n+1} \leq a_{n+2}$. So, we have

$$a_n \le a_{n+1} \Longrightarrow \frac{-1}{a_n} \le \frac{-1}{a_{n+1}} \Longrightarrow 3 - \frac{1}{a_n} \le 3 - \frac{1}{a_{n+1}} \Longrightarrow a_{n+1} \le a_{n+2}$$

Step 3: Conclude convergence

The sequence $\{a_n\}$ is increasing and bounded above by 3. By the Monotone Convergence Theorem, it must converge.

Step 4: Find the limit

Let $\lim_{n\to\infty} a_n = L$. Then taking limits in the recurrence:

$$L = 3 - \frac{1}{L} \Rightarrow L^2 = 3L - 1 \Rightarrow L^2 - 3L + 1 = 0.$$

Solving the quadratic:

$$L = \frac{3 \pm \sqrt{9-4}}{2} = \frac{3 \pm \sqrt{5}}{2}.$$

The limit must be greater than $a_1 = 1$. So we have

$$\lim_{n \to \infty} a_n = \boxed{\frac{3 + \sqrt{5}}{2}}.$$

Problem 2. Determine whether the sequence converges or diverges. If it converges, find the limit.

a) $a_n = \frac{4^n}{1+9^n}$. b) $a_n = \cos\left(\frac{n\pi}{n+1}\right)$.

Answer:

a) a_n = ^{4ⁿ}/_{1+9ⁿ} ≤ (⁴/₉)ⁿ, by Squeeze Theorem, a_n → 0.
b) lim_{n→∞} a_n = lim_{n→∞} cos (^{nπ}/_{n+1}) = cos (lim_{n→∞} ^{nπ}/_n) = cos(π) = -1.

Problem 3. Determine whether the series is convergent or divergent by expressing s_n as a telescoping sum. If it is convergent, find its sum.

a) $\sum_{n=1}^{\infty} \left(\frac{1}{n+2} - \frac{1}{n}\right)$. b) $\sum_{n=4}^{\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}\right)$.

Answer.

a) The partial sum

$$s_n = \sum_{k=1}^n \left(\frac{1}{k+2} - \frac{1}{k}\right)$$

= $\left(\frac{1}{3} - \frac{1}{1}\right) + \left(\frac{1}{4} - \frac{1}{2}\right) + \left(\frac{1}{5} - \frac{1}{3}\right) + \left(\frac{1}{6} - \frac{1}{4}\right)$
+ $\dots + \left(\frac{1}{n} - \frac{1}{n-2}\right) + \left(\frac{1}{n+1} - \frac{1}{n-1}\right) + \left(\frac{1}{n+2} - \frac{1}{n}\right)$
= $-1 - \frac{1}{2} + \frac{1}{n+1} + \frac{1}{n+2}.$

Thus $\sum a_n = \lim_{n \to \infty} s_n = -\frac{3}{2}$.

b) The partial sum is

$$s_n = \sum_{n=4}^n \left(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}}\right) = \frac{1}{2} - \frac{1}{\sqrt{n+1}}.$$

Thus $\sum a_n = \lim_{n \to \infty} s_n = \frac{1}{2}$.

Problem 4. Determine whether the geometric series is convergent or divergent. If it is convergent, find its sum.

a) $\sum_{n=1}^{\infty} \frac{e^{2n}}{6^{n-1}}$.

b)
$$\sum_{n=1}^{\infty} \frac{6 \cdot 2^{2n-1}}{3^n}$$

c) $2 + 0.5 + 0.125 + 0.03125 + \cdots$

Answer.

a) Write

$$\frac{e^{2n}}{6^{n-1}} = e^2 \cdot \left(\frac{e^2}{6}\right)^{n-1}.$$
$$\sum a_n = \sum_{n=1}^{\infty} e^2 \left(\frac{e^2}{6}\right)^{n-1}.$$

Thus

Note that
$$r = \frac{e^2}{6} \approx \frac{7.389}{6} > 1$$
, so the common ratio is greater than 1, and the series diverges.

b) Write the series as follows

$$\sum_{n=1}^{\infty} \frac{6 \cdot \frac{4^n}{2}}{3^n} = \sum_{n=1}^{\infty} \frac{3 \cdot 4^n}{3^n} = \sum_{n=1}^{\infty} 3\left(\frac{4}{3}\right)^n$$

This is a geometric series with $r=\frac{4}{3}>1,$ so it diverges.

c) Consider the series:

$$2 + 0.5 + 0.125 + 0.03125 + \cdots$$

We observe that this is a geometric series where each term is obtained by multiplying the previous term by 0.25. Thus, it is a geometric series with:

$$a = 2, \quad r = 0.25.$$

Since |r| < 1, the series converges. The sum of an infinite geometric series is given by:

$$S = \frac{a}{1-r}$$

Substituting the values:

$$S = \frac{2}{1 - 0.25} = \frac{2}{0.75} = \frac{8}{3}$$

Problem 5. Determine whether the series is convergent or divergent. If it is convergent, find its sum.

a) $\sum_{n=1}^{\infty} \left(\frac{2+n}{1-2n}\right)$. b) $\sum_{k=1}^{\infty} \frac{k^2}{k^2-2k+5}$.

c)
$$\sum_{n=1}^{\infty} \left(\frac{3}{5^n} + \frac{2}{n}\right)$$
.
d) $\sum_{n=1}^{\infty} \left(\frac{1}{e^n} + \frac{1}{n(n+1)}\right)$.

Answer.

a)

$$\lim_{n \to \infty} \frac{2+n}{1-2n} = -\frac{1}{2}.$$

Thus the series diverges by the Divergence Test.

b) As $k \to \infty$:

$$\frac{k^2}{k^2 - 2k + 5} \to 1$$

Diverges.

c) Split into two series:

$$\sum_{n=1}^{\infty} \left(\frac{3}{5^n} + \frac{2}{n}\right) = \sum_{n=1}^{\infty} \frac{3}{5^n} \quad \text{(geometric, converges)} + \sum_{n=1}^{\infty} \frac{2}{n} \quad \text{(harmonic, diverges)}.$$

Since one component diverges, the full series diverges.

d) Split into two series:

$$\sum_{n=1}^{\infty} \frac{1}{e^n} = \frac{1}{e-1} \quad \text{(geometric)}$$

Use partial fractions:

$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1} \Rightarrow \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1$$

Total sum:

$$1 + \frac{1}{e-1}$$

		I