
Math 162: Calculus IIA

Second Midterm Exam ANSWERS

November 18, 2022

Integration by parts formula: ∫
u dv = uv −

∫
v du

Trigonometric identities:

cos2(x) + sin2(x) = 1 sec2(x)− tan2(x) = 1 sin(2x) = 2 sin(x) cos(x)

cos2(x) =
1 + cos(2x)

2
sin2(x) =

1− cos(2x)

2

Derivatives of trig functions.

d sinx

dx
= cosx

d tanx

dx
= sec2 x

d secx

dx
= secx tanx

d cosx

dx
= − sinx

d cotx

dx
= − csc2 x

d cscx

dx
= − cscx cotx

Trigonometric substitution (known in Doug’s section as the rabbit trick.)) for odd powers of

secant and even powers of tangent:

u = sec(θ) + tan(θ) sec(θ)dθ =
du

u

sec(θ) =
u2 + 1

2u
tan(θ) =

u2 − 1

2u

Area of surface of revolution in rectangular coordinates, y = f(x) with a ≤ x ≤ b

• about the x-axis: S = 2π

∫ b

a

f(x)
√
1 + f ′(x)2 dx

• about the y-axis: S = 2π

∫ b

a

x
√
1 + f ′(x)2 dx
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More formulas for your enjoyment

Polar coordinates

r =
√

x2 + y2 θ = arctan(y/x) for x > 0

π + arctan(y/x)for x < 0

π/2for x = 0 and y > 0

3π/2for x = 0 and y < 0

undefinedfor (x, y) = (0, 0)

x = r cos θ y = r sin θ

Changing θ by any multiple of 2π does not change the location of the point. Changing the

sign of r is equivalent to adding π to θ, which is the same as moving the point to one in the

opposite direction and the same distance from the origin.

Area in polar coordinates for r = f(θ) with α ≤ θ ≤ β:

A =

∫ β

α

r2

2
dθ

Arc length formulas

• Rectangular coordinates, y = f(x) with a ≤ x ≤ b:

S =

∫ b

a

√
1 + f ′(x)2 dx

• Polar coordinates, r = f(θ) with α ≤ θ ≤ β:

S =

∫ β

α

√
r2 + f ′(θ)2 dθ

• Parametric equations, x = x(t) and y = y(t) with a ≤ t ≤ b:

S =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt
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1. (20 points)

(a) Find the area of the region both inside the circle r = sin θ and outside the circle r =√
3 cos θ (both equations are in polar coordinates). The two circles are shown below. They

intersect at the origin and the polar point (θ, r) = (π/3,
√
3/2).

Answer:

Find the area of the region inside the first circle and outside the second by integrating:∫ π

π/3

1
2
r2 dθ = 1

2

∫ π

π/3

sin2 θ dθ = 1
4

∫ π

π/3

(
1− cos 2θ

)
dθ =

π

6
+

√
3

16

and subtracting:∫ π/2

π/3

1
2
r2 dθ = 1

2

∫ π/2

π/3

3 cos2 θ dθ = 3
4

∫ π/2

π/3

(
1 + cos 2θ

)
dθ =

π

8
− 3

√
3

16

So the area of the region is
π

24
+

√
3

4
≈ 0.563912.

(b) Compute the equation (in Cartesian coordinates x, y) of the tangent line to the circle

r = sin θ at the points where it intersects the circle r =
√
3 cos θ

Answer:

Convert the curve to Cartesian coordinates:

x = r cos θ = sin θ cos θ = 1
2
sin 2θ

y = r sin θ = sin2 θ =
1− cos 2θ

2
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Thus:

dy

dx
=

dy/dθ

dx/dθ
=

sin 2θ

cos 2θ
= tan(2θ)

So at the points of intersection θ = 0 and θ = π/3:

dy

dx
= tan(0) = 0

dy

dx
= tan(2π/3) = −

√
3

Since (r, θ) = (
√
3/2, π/2) corresponds to (x, y) = (

√
3/4, 3/4) (scale the 1-2-

√
3 triangle by√

3/4), the equations of the tangents at those points are:

y = 0 y −
√
3

2
= −

√
3
(
x−

√
3
4

)
2. (20 points)

(a) (10 points) Find ∫ ∞

a

dx

(x+ 4)3/2
for a ≥ 0.

Answer:

Use the substitution u = x+ 4, making dx = du. Then we have∫ ∞

a

dx

(x+ 4)3/2
=

∫ ∞

a+4

du

u3/2
=

u−1/2

−1/2

∣∣∣∣∞
a+4

=
−2√
u

∣∣∣∣∞
a+4

=
2√

a+ 4

(b) (10 points) Find ∫ ∞

4

e−x/4dx

Answer:

Let u = x/4, so dx = 4du. Then we have∫ ∞

4

e−x/4dx = 4

∫ ∞

1

e−udu = −4e−u
∣∣∣∞
1

=
4

e
.

3. (20 points)
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Determine if the following sequences are convergent or divergent and explain why. If it is

convergent, give its limit.

(a) (10 points) {
3n sin(n)

2n3 + 5

∣∣∣ n ≥ 0

}
.

Answer:

We use the Squeeze Theorem. Because −1 ≤ sin(n) ≤ 1, the sequence is bounded below

by
{
− 3n

2n3+5

∣∣∣ n ≥ 0
}
and above by

{
3n

2n3+5

∣∣∣ n ≥ 0
}
. The limit of both of these sequences is

zero, so the limit of
{

3n sin(n)
2n3+5

∣∣∣ n ≥ 0
}
must also be zero by the Squeeze Theorem.

(b) (10 points) {
n

ln(n)

∣∣∣ n ≥ 2

}

Answer:

Let

f(x) =
x

ln(x)
.

Now as x → ∞, L’Hopital’s rule applies. We have

lim
x→∞

x

ln(x)
= lim

x→∞

1

1/x
= lim

x→∞
x = ∞.

Because this limit diverges, so does the limit of the sequence.

4. (20 points)

(a) Compute the area of surface of revolution obtained by rotating the following curve around

the x-axis:

y =
√
1 + ex 0 ≤ x ≤ 1

Answer:
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A = 2π

∫ 1

0

y

√
1 +

(
dy

dx

)2

dx

= 2π

∫ π

0

√
1 + ex

√
1 +

e2x

4(1 + ex)
dx

= 2π

∫ 1

0

√
e2x + 4ex + 4 dx

= 2π

∫ 1

0

ex + 2 dx

= (2π) [ex + 2x]10

= 2π(e+ 1)

(b) Compute the area of surface of revolution obtained by rotating the following curve around

the y-axis:

y =
x2

2
0 ≤ x ≤ 1

Answer:

A = 2π

∫ 1

0

x

√
1 +

(
dy

dx

)2

dx

= 2π

∫ 1

0

x
√
1 + x2 dx

= π

∫ 2

1

√
u du

=
2π

3

[
u3/2

]2
1

=
2π

3

(
23/2 − 1

)
5. (20 points)

Find the arc length of the curve described by the parametric equations

x = cos(t2), y = sin(t2)

between the points with Cartesian coordinates (1, 0) and (−1, 0).
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Answer:

The points on the curve with Cartesian coordinates (1, 0) and (−1, 0) are the points when

the parameter t equals 0 and
√
π respectively.

We have that

dx/dt = − sin(t2)2t, dy/dt = cos(t2)2t

(dx/dt)2 = 4t2 sin2(t2), (dy/dt)2 = 4t2 cos2(t2)

(dx/dt)2 + (dy/dt)2 = 4t2(sin2(t2) + cos2(t2) = 4t2√
(dx/dt)2 + (dy/dt)2 = 2t

So the arc length L is

L =

∫ √
π

0

√
(dx/dt)2 + (dy/dt)2dt =

∫ √
π

0

2tdt = t2
∣∣∣√π

0
= π.

Scratch paper
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Scratch paper

Page 8 of 9



November 15, 2022 Second Midterm Exam Math 162 (Calculus IIA)

Scratch paper
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