Math 162: Calculus IIA

Second Midterm Exam, Evening Edition ANSWERS November 17, 2020

Trig formulas:

- $\cos^2(x) + \sin^2(x) = 1$
- $\sec^2(x) \tan^2(x) = 1$
- $\sin(2x) = 2\sin(x)\cos(x)$
- $\cos^2(x) = \frac{1 + \cos(2x)}{2}$ • $\sin^2(x) = \frac{1 - \cos(2x)}{2}$

Polar coordinate formulas:

• Area:

$$\frac{1}{2}\int r^2d\theta$$

• Arc length:

$$\int \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$$

Parametric equation formulas:

- Newton's notation: $\dot{x} = dx/dt$ $\dot{y} = dy/dt$
- Slope of tangent line: $dy/dx = \dot{y}/\dot{x}$.
- Second derivative

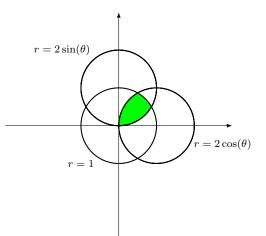
$$\frac{d^2y}{dx^2} = \frac{d(\dot{y}/\dot{x})/dt}{\dot{x}}.$$

Curve is concave up/down when this is positive/negative.

• Arc length:

$$\int \sqrt{\dot{x}^2 + \dot{y}^2} dt$$

1. (25 points) Compute the area inside the polar curves $r = 1, r = \cos(\theta)$ and $r = \sin(\theta)$.



Solution: The region occurs in the first quadrant, which is the interval θ in $[0, \frac{\pi}{2}]$. The first θ where two of the functions intersect is where $1 = 2\sin(\theta)$, or $\theta = \frac{\pi}{6}$. For θ in $[0, \frac{\pi}{6}]$, the region is bound by the function $r = 2\sin(\theta)$. The next θ where 2 of the functions intersect is where $1 = 2\cos(\theta)$, or $\theta = \frac{\pi}{3}$. For θ in $[\frac{\pi}{6}, \frac{\pi}{3}]$, the region is bound by the function $r = 2\cos(\theta)$. So the area of this region is

$$\begin{split} &\frac{1}{2}\int_{0}^{\frac{\pi}{6}}(2\sin(\theta))^{2}d\theta + \frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}(1)^{2}d\theta + \frac{1}{2}\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}(2\cos(\theta))^{2}d\theta \\ &= \int_{0}^{\frac{\pi}{6}}1 - \cos(2\theta)d\theta + \frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}1d\theta + \int_{\frac{\pi}{3}}^{\frac{\pi}{2}}1 + \cos(2\theta)d\theta \\ &= \left[\theta - \frac{\sin(2\theta)}{2}\right]_{0}^{\frac{\pi}{6}} + \left[\frac{\theta}{2}\right]_{\frac{\pi}{6}}^{\frac{\pi}{3}} + \left[\theta + \frac{\sin(2\theta)}{2}\right]_{\frac{\pi}{3}}^{\frac{\pi}{2}} \\ &= \frac{\pi}{6} - \frac{\sqrt{3}}{4} + \frac{\pi}{6} - \frac{\pi}{12} + \frac{\pi}{2} - \frac{\pi}{3} - \frac{\sqrt{3}}{4} \\ &= \frac{5\pi}{12} - \frac{\sqrt{3}}{2}. \end{split}$$

2. (25 points)

Let C be the upper half of the circle centered at the origin with radius 6. The arc on C between (0, 6) and $(\sqrt{11}, 5)$ is rotated about the x-axis to produce a surface S.

(a) (15 points) Use

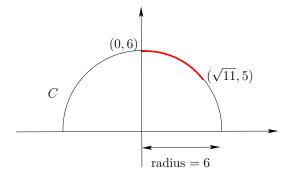


Figure 1:

$$ds = \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx$$

to find the surface area.

Answer:

The formula for C is $y = \sqrt{36 - x^2}$. Then

$$S = \int_{0}^{\sqrt{11}} 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$$

=
$$\int_{0}^{\sqrt{11}} 2\pi \sqrt{36 - x^{2}} \sqrt{1 + \left(-\frac{x}{\sqrt{36 - x^{2}}}\right)^{2}} dx$$

=
$$\int_{0}^{\sqrt{11}} 2\pi \sqrt{36 - x^{2}} \sqrt{\frac{36}{36 - x^{2}}} dx$$

=
$$\int_{0}^{\sqrt{11}} 12\pi dx$$

=
$$12\sqrt{11}\pi$$

(b) (10 points) Consider the same surface as in part (a). This time, use

$$ds = \sqrt{1 + \left(\frac{dx}{dy}\right)^2} \, dy$$

to find the surface area.

Answer:

Since the arc lies on the right half of C, we use the formula $x = \sqrt{36 - y^2}$, so that

$$S = \int_{5}^{6} 2\pi y \sqrt{1 + \left(\frac{dx}{dy}\right)^{2}} dy$$

=
$$\int_{5}^{6} 2\pi y \sqrt{1 + \left(-\frac{y}{\sqrt{36 - y^{2}}}\right)^{2}} dy$$

=
$$\int_{5}^{6} 2\pi y \sqrt{\frac{36}{36 - y^{2}}} dy$$

=
$$\int_{5}^{6} 12\pi y \frac{1}{\sqrt{36 - y^{2}}} dy$$

Make the substitution $u = 36 - y^2$, so that

 $-du = 2y \, dy, \quad \text{when} \quad y = 5, u = 11, \quad \text{when} \quad y = 6, u = 0.$

The integral becomes

$$S = -\int_{11}^{0} 6\pi \frac{1}{\sqrt{u}} du$$

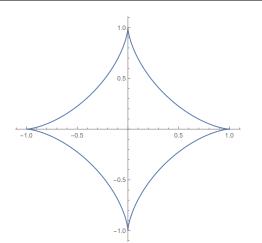
=
$$\int_{0}^{11} 6\pi \frac{1}{\sqrt{u}} du$$

=
$$12\pi\sqrt{u} \mid_{0}^{11}$$

=
$$12\sqrt{11}\pi$$

3. (25 points)

Consider the parametric curve (an astroid or 4 pointed hypocycloid) $x = \cos^3(t)$, $y = \sin^3(t)$, $t \in [0, 2\pi]$.



(a) (9 points) At what points is the tangent horizontal or vertical?

Answer:

We have

$$\frac{dx}{dt} = -3\sin t \cos^2 t$$
$$\frac{dy}{dt} = 3\cos t \sin^2 t$$
$$\frac{dy}{dx} = -\frac{\cos t \sin^2 t}{\sin t \cos^2 t} = -\tan t$$

The tangent line is horizontal when this derivative is 0, namely when t = 0 and $t = \pi$. The tangent line is vertical when the derivative is undefined, namely at $t = \pi/2$ and $t = 3\pi/2$. (b) (8 points) At what points does it have slope ± 1 ?

Answer:

The slope of the tangent line is ± 1 when $t = \pi/4$, $3\pi/4$, $5\pi/4$ and $7\pi/4$.

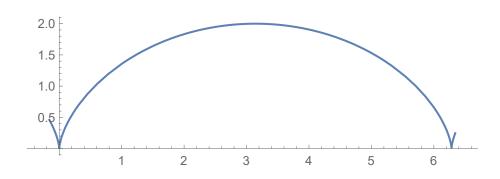
(c) (8 points) Find the equation of the form y = mx + b for the tangent at $t = \frac{\pi}{4}$.

Answer:

At $t = \pi/4$ we have $x = y = \sqrt{2}/4$ and dy/dx = -1, so the equation for the tangent line is

$$\begin{array}{rcl} \frac{y - \sqrt{2}/4}{x - \sqrt{2}/4} &=& -1\\ y - \sqrt{2}/4 &=& -(x - \sqrt{2}/4)\\ &=& -x + \sqrt{2}/4\\ y &=& -x + \sqrt{2}/2. \end{array}$$

4. (25 points) Find the arc length of the cycloid $x = r(t-\sin(t))$ and $y = r(1-\cos(t))$, for $0 \le t \le 2\pi$.



Answer:

We have

$$\begin{aligned} \frac{dx}{dt} &= r(1 - \cos t) \\ \frac{dy}{dt} &= r \sin t \\ \left(\frac{ds}{dt}\right)^2 &= \left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 \\ &= r^2 \left((1 - \cos t)^2 + \sin^2 t\right) \\ &= r^2 \left(1 - 2\cos t + \cos^2 t + \sin^2 t\right) \\ &= 2r^2 \left(1 - \cos t\right) \\ \frac{ds}{dt} &= 2r\sqrt{\frac{1 - \cos t}{2}} \\ &= 2r\sin(t/2), \end{aligned}$$

so the arc length is

$$s = \int 02\pi 2r \sin(t/2)dt$$

= $4r \int 0\pi \sin u du$ where $u = t/2$
= $-4r \cos u|_0^{\pi}$
= $8r$