Math 162: Calculus IIA

Second Midterm Exam November 12, 2009

NAME (please print legibly): ______ Your University ID Number: ______ Indicate your instructor with a check in the box:

John Olsen	MWF 9:00 - 9:50 AM	
Doug Ravenel	MWF 10:00 - 10:50 AM	

- The presence of calculators, cell phones, iPods and other electronic devices at this exam is strictly forbidden.
- Show your work and justify your answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- Put your answers in the boxes provided at the bottom of each page or half page. You will not get credit for answers written elsewhere.
- You are responsible for checking that this exam has all 8 pages.

QUESTION	VALUE	SCORE
1	20	
2	20	
3	20	
4	20	
5	20	
TOTAL	100	

What is the surface area of the surface of revolution obtained by rotating the infinite curve e^{-x} , $x \ge 0$ around the x-axis? You may use the formula

$$\int \sec^3(x) \, dx = \frac{1}{2}(\sec(x)\tan(x) + \ln|\sec(x) + \tan(x)|) + C.$$

Consider the parametric curve (an astroid or 4 pointed hypocycloid) $x = \cos^3(t), y = \sin^3(t), t \in [0, 2\pi].$

(a) (7 points) At what points is the tangent horizontal or vertical?

ANSWER:

(b) (6 points) At what points does it have slope ± 1 ?

(c) (7 points) Find the equation of the form y = mx + b for the tangent at $t = \frac{\pi}{4}$.

Find the arc length of the cycloid $x = r(t - \sin(t))$ and $y = r(1 - \cos(t))$, for $0 \le t \le 2\pi$.

Consider the logarithmic spiral $r = e^{\theta}$, $\theta \ge 0$, which can be defined parametrically by $x = e^t \cos t$ and $y = e^t \sin t$ with $t = \theta$.

(a) (10 points) Calculate the arc-length of the logarithmic spiral for $0 \le \theta \le b$.

ANSWER:

(b) (10 points) Calculate the area of the region between the x-axis and the curve for $0 \le \theta \le \pi$.

(a) (5 points) Use L'Hospital's Rule to show that for k > 0,

$$\lim_{x \to \infty} x^k e^{-x^2} = \frac{k}{2} \lim_{x \to \infty} x^{k-2} e^{-x^2}.$$

ANSWER:

(b) (5 points) Let $a_n = n^8 e^{-n^2}$ where n = 1, 2, 3, ... Show that the sequence $\{a_n : n \ge 1\}$ converges. What is the limit?

(c) (5 points) Does the sequence $b_n = \cos(\frac{n\pi}{2})(-\frac{1}{2})^n$ converge? Why or why not?

ANSWER:

(d) (5 points) Does the sequence $b_n = \frac{1}{n^{0.005}}$ converge? Why or why not?