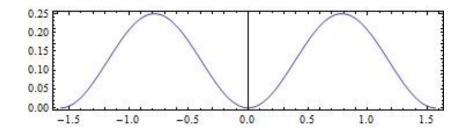
Math 162: Calculus IIA

First Midterm Exam February 26, 2019

NAME (please print legibly): ______ Your University ID Number: ______ Your University email _____

Indicate your instructor with a check in the box:

Saul Lubkin	MW 9:00 - 10:15 AM	
Doug Ravenel	MWF 10:25 - 11:40 AM	
Rufei Ren	MW 2:00 - 3:15 PM	
Martin Snow	MW 3:25 - 4:40 PM	
Amanda Tucker	TR 9:40-10:55 AM	


Pledge of Honesty

I affirm that I will not give or receive any unauthorized help on this exam and that all work will be my own.

Signature: _____

- The presence of calculators, cell phones, iPods and other electronic devices at this exam is strictly forbidden. IF YOU HAVE YOUR PHONE WITH YOU, YOU MUST TURN IT IN TO A PROCTOR BEFORE START-ING THE EXAM. FAILURE TO DO SO WILL BE TREATED AS AN ACADEMIC HONESTY VIOLATION.
- Show your work and justify your answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- Put your answers in the space provided at the bottom of each page or half page.
- You are responsible for checking that this exam has all 10 pages.

1. (20 points) Find the average value of the function $f(x) = \sin^2(x)\cos^2(x)$ on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

2. (20 points) If $a \neq 0$, evaluate

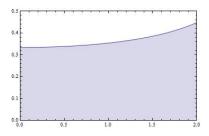
$$\int \cos^3(ax+b)\,dx$$

in terms of a and b.

3. (20 points) A heavy rope, 20 m long, weighs 2 kg/m and hangs over the edge of a building 100 m high. Consider that one ties a heavy ball at the end of this rope with weight 20 kg. How much work is done in pulling half the rope to the top of the building?

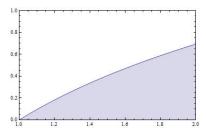
4. (20 points)

(a) (10 points) Use integration by parts to find a formula for


$$\int x^n e^x \, dx \qquad \text{in terms of} \qquad \int x^{n-1} e^x \, dx$$

(b) (10 points) Use this formula to find

 $\int x^3 e^x \, dx.$


5. (20 points)

(a) (10 points) Find the volume of the solid obtained by rotating the region bounded by the x-axis and the curve $y = 1/\sqrt{9-x^2}$ for $0 \le x \le 2$

about the y-axis.

(b) (10 points) Find the volume of the solid obtained by rotating the region bounded by the x-axis and the curve y = ln(x) for $1 \le x \le 2$ about the line x = -1.

Scratch paper

Scratch paper