Math 162: Calculus IIA

First Midterm Exam October 10, 2023

NAME (please print legibly): _____

Your University ID Number: _____

Your University email ____

Indicate your instructor with a check in the box:

Firdavs Rakhmonov	MW 9:00 - 10:15 AM	
Doug Ravenel	MW 10:25 - 11:40 AM	
Peter Oberly	MW 12:30 - 1:45 PM	
Sefika Kuzgun	MW 3:25 - 4:40 PM	

Pledge of Honesty

I affirm that I will not give or receive any unauthorized help on this exam and that all work will be my own.

Signature: _____

- The presence of calculators, cell phones, iPods and other electronic devices at this exam is strictly forbidden. IF YOU HAVE YOUR PHONE WITH YOU, YOU MUST TURN IT IN TO A PROCTOR BEFORE START-ING THE EXAM. FAILURE TO DO SO WILL BE TREATED AS AN ACADEMIC HONESTY VIOLATION.
- Show your work and justify your answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- Put your answers in the space provided at the bottom of each page or half page.
- You are responsible for checking that this exam has all 14 pages.

Integration by parts formula:

$$\int u\,dv = uv - \int v\,du$$

Trigonometric identities:

$$\cos^{2}(x) + \sin^{2}(x) = 1$$

$$\sin(2x) = 2\sin(x)\cos(x)$$

$$\cos^{2}(x) = \frac{1 + \cos(2x)}{2}$$

$$\sin^{2}(x) = \frac{1 - \cos(2x)}{2}$$

Derivatives of trig functions.

$$\frac{d\sin x}{dx} = \cos x \qquad \qquad \frac{d\tan x}{dx} = \sec^2 x \qquad \qquad \frac{d\sec x}{dx} = \sec x \tan x$$
$$\frac{d\cos x}{dx} = -\sin x \qquad \qquad \frac{d\cot x}{dx} = -\csc^2 x \qquad \qquad \frac{d\csc x}{dx} = -\csc x \cot x$$

Trigonometric substitution (known in Doug's section as *the rabbit trick*.)) for odd powers of secant and even powers of tangent:

$$u = \sec(\theta) + \tan(\theta) \qquad \qquad \sec(\theta)d\theta = \frac{du}{u}$$
$$\sec(\theta) = \frac{u^2 + 1}{2u} \qquad \qquad \tan(\theta) = \frac{u^2 - 1}{2u}$$

1. (20 points)

(a) (10 points) Find the integral

$$\int \frac{x}{\sqrt{x^2 - 6x + 13}} \, dx$$

(b) (10 points) Find the integral

$$\int \frac{2x+1}{x^3+2x^2+x} \, dx.$$

2. (20 points)

(a) (10 points) Prove the reduction formula

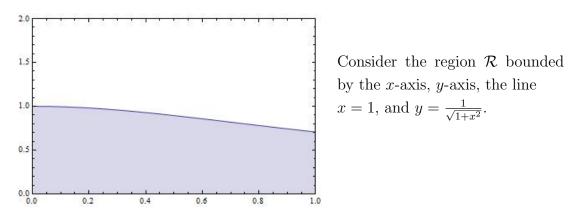
$$\int \sin^n x \, dx = -\frac{1}{n} \cos x \sin^{n-1} x + \frac{n-1}{n} \int \sin^{n-2} x \, dx,$$

where $n \ge 2$ is an integer.

(b) (10 points) Use your formula repeatedly to find

 $\int \sin^4 x \, dx$

3. (20 points) If $a \neq 0$, evaluate


$$\int \sin^2(ax) \cos^2(ax) \, dx$$

in terms of a.

4. (20 points) This a work problem with metric units. Assume that acceleration due to gravity is A meters per second per second. You should give your answer in joules as a multiple of $A\pi$. The density of water is a thousand kilograms per cubic meter.

Consider the region of the xy-plane bounded by the curve $y = x^2$ and the lines defined by x = 0 and y = 3. Rotate this region about the y-axis to obtain a solid region or bowl, which is filled with water. How much work is needed to pump the water about over the top of the bowl?

5. (20 points)

(a) (10 points) Compute the volume of the solid obtained by revolving \mathcal{R} about the x-axis.

(b) (10 points) Compute the volume of the solid obtained by revolving \mathcal{R} about the *y*-axis.