Math 162: Calculus IIA

First Midterm Exam September 30, 2021

NAME (please print legibly): ______ Your University ID Number: _____ Your University email _____

Indicate your instructor with a check in the box:

Bogdan Krstic	MW 9:00 - 10:15 AM	
Doug Ravenel	MWF 10:25 - 11:40 AM	
Charles Wolf	MW 12:30 - 1:45 PM	

Pledge of Honesty

I affirm that I will not give or receive any unauthorized help on this exam and that all work will be my own.

Signature: _____

- The presence of calculators, cell phones, iPods and other electronic devices at this exam is strictly forbidden. IF YOU HAVE YOUR PHONE WITH YOU, YOU MUST TURN IT IN TO A PROCTOR BEFORE START-ING THE EXAM. FAILURE TO DO SO WILL BE TREATED AS AN ACADEMIC HONESTY VIOLATION.
- Show your work and justify your answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given. If some of your work is not on the page where the problem appears, indicate where it is.
- Put your answers in the space provided at the bottom of each page or half page.
- You are responsible for checking that this exam has all 9 pages.

Integration by parts formula:

$$\int u\,dv = uv - \int v\,du$$

Trigonometric identities:

$$\cos^{2}(x) + \sin^{2}(x) = 1 \qquad \sec^{2}(x) - \tan^{2}(x) = 1 \qquad \sin(2x) = 2\sin(x)\cos(x)$$
$$\cos^{2}(x) = \frac{1 + \cos(2x)}{2} \qquad \sin^{2}(x) = \frac{1 - \cos(2x)}{2}$$

Derivatives of trig functions.

$$\frac{d\sin x}{dx} = \cos x \qquad \qquad \frac{d\tan x}{dx} = \sec^2 x \qquad \qquad \frac{d\sec x}{dx} = \sec x \tan x$$
$$\frac{d\cos x}{dx} = -\sin x \qquad \qquad \frac{d\cot x}{dx} = -\csc^2 x \qquad \qquad \frac{d\csc x}{dx} = -\csc x \cot x$$

Compute the following integral:

 $\int \cos^{2021}(x) \tan^3(x) dx$

The average value of a function f(x) for $a \le x \le b$ is

$$\frac{1}{b-a}\int_{a}^{b}f(x)\,dx$$

Find the average value of the function $f(x) = 2 + \sin x$ for $0 \le x \le 5\pi$. HINT: You may use the fact that

$$\int_0^{\pi} \sin x \, dx = 2 \qquad \text{and } \int_a^{a+2\pi} \sin x \, dx = 0 \qquad \text{for any number } a.$$

A trough is 4 meters long and half a meter tall, with vertical cross-sections parallel to the ends in the shape of isosceles trapezoids which are 1 meter wide at the bottom and 2 meters wide at the top. The trough is full of water. Find work done pumping the water to the top of the trough. Assume that the water density is $\rho = 1000 \, kg/m^3$ and the gravity constant is $g = 10 \, m/s^2$.

The region \mathcal{R} in the plane is bounded by the graph of $y = e^x$, the x-axis, and the lines x = 1and x = 2.

- (a) Find the volume of the solid \mathcal{S} obtained by revolving \mathcal{R} about the x-axis.
- (b) Find the volume of the solid \mathcal{T} obtained by revolving \mathcal{R} about the *y*-axis.

(a) Use integration by parts to find a formula for

$$\int x^n e^x dx$$
 in terms of $\int x^{n-1} e^x dx$

for any integer $n \ge 0$.

(b) Use your formula repeatedly to find

$\int x^3 e^x \, dx$

Scratch paper

More scratch paper