Math 162: Calculus IIA

First Midterm Exam October 11, 2016

NAME (please print legibly): ______ Your University ID Number: _____ Your University email _____

Indicate your instructor with a check in the box:

Jie Zhong	MWF 9:00 - 9:50 AM	
Doug Ravenel	MWF 10:25 - 11:15 AM	
Doug Haessig	MW 12:30 - 1:45 PM	
Carl McTague	MW 4:50-6:05 PM	

Pledge of Honesty

I affirm that I will not give or receive any unauthorized help on this exam and that all work will be my own.

Signature: _____

- The presence of calculators, cell phones, iPods and other electronic devices at this exam is strictly forbidden. IF YOU HAVE YOUR PHONE WITH YOU, YOU MUST TURN IT IN TO A PROCTOR BEFORE START-ING THE EXAM. FAILURE TO DO SO WILL BE TREATED AS AN ACADEMIC HONESTY VIOLATION.
- Show your work and justify your answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- Put your answers in the space provided at the bottom of each page or half page.
- You are responsible for checking that this exam has all 9 pages.

QUESTION	VALUE	SCORE
1	20	
2	20	
3	20	
4	20	
5	20	
TOTAL	100	

(a) Use integration by parts twice to express $I_n = \int x^n \cos x \, dx$ in terms of I_{n-2} for $n \ge 2$.

(b) Use the formula of part (a) repeatedly to find I_4 .

You will not get partial credit here if the formula you are using is incorrect.

A heavy rope, 20 ft long, weighs 0.5 lbs/ft and hangs over the edge of a building 100 ft high. How much work is done in pulling half the rope to the top of the building?

3. (20 points) Consider the region bounded by the x-axis and the curve $y = \sin x$ for $0 \le x \le \pi$.

(a) Find the volume of the solid obtained by rotating it about the x-axis.

b) Find the volume of the solid obtained by rotating the same region about the y-axis.

Compute the definite integral

$$\int_{\sqrt{2}}^{\sqrt{6}} \frac{dx}{(2x^2 - 3)^{3/2}}.$$

Evaluate the following integral:

$$\int \frac{3x}{(x+1)(x^3+1)} dx.$$