Math 162: Calculus IIA

First Midterm Exam October 18, 2011

NAME (please print legibly):	
Your University ID Number:	
Indicate your instructor with a c	heck in the hox:

Yoonbok Lee	MWF 9:00 - 9:50 AM	
Doug Ravenel	MWF 10:00 - 10:50 AM	
Don Larson	MW 11:00 - 11:50 AM	

- The presence of calculators, cell phones, iPods and other electronic devices at this exam is strictly forbidden.
- Show your work and justify your answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- Put your answers in the space provided at the bottom of each page or half page.
- You are responsible for checking that this exam has all 11 pages.

QUESTION	VALUE	SCORE
1	20	
2	20	
3	20	
4	20	
5	20	
TOTAL	100	

- 1. (20 points) Evaluate the following integrals:
- (a) (10 points)

$$\int \frac{3x}{(x+1)(x^3+1)} dx.$$

(b) (10 points)

$$\int_0^{\pi/2} \sin^4 x dx.$$

2. (20 points)

(a) (10 points) Use integration by parts to find a formula for

$$\int (\ln x)^n dx \quad \text{in terms of} \quad \int (\ln x)^{n-1} dx$$

(b) (10 points) Use this formula to find

$$\int (\ln x)^2 \, dx.$$

3. (20 points) (a) (10 points) Find the integral

$$\int_{-1}^{0} \frac{dx}{\sqrt{x^2 + 4x + 3}}$$

(b) (10 points) Find the integral

$$\int_4^6 \sqrt{8x - x^2} dx.$$

4. (20 points) Consider the curve

$$f(x) = 2x^{3/2} + 7$$

(a) (10 points) Calculate the arc length function s(t) starting at x = 0, that computes the length of the curve from (0, f(0)) to (t, f(t)).

(b) (10 points) Calculate the arc length from x = 2 to x = 4.

- **5.** (20 points) Consider region between the curves y = 2x and $y = x^2$.
- (a) Find the volume of the solid of revolution about the x-axis.

(b) Find the volume of the solid of revolution about the y-axis.