Math 162: Calculus IIA

First Midterm Exam October 19, 2010

NAME (please print legibly): ______ Your University ID Number: ______ Indicate your instructor with a check in the box:

Ang Wei	MWF 9:00 - 9:50 AM	
Doug Ravenel	MWF 10:00 - 10:50 AM	
Jon Carstea	MW 2:00 - 3:15 PM	

- The presence of calculators, cell phones, iPods and other electronic devices at this exam is strictly forbidden.
- Show your work and justify your answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- Put your answers in the space provided at the bottom of each page or half page.
- You are responsible for checking that this exam has all 11 pages.

QUESTION	VALUE	SCORE
1	20	
2	20	
3	20	
4	20	
5	20	
TOTAL	100	

- 1. (20 points) Evaluate the following integrals:
- (a) (10 points)

$$\int \frac{48}{x^4 - 16} dx.$$

(b) (10 points)

 $\int_0^\pi \sin^2 x \cos^2 x dx.$

2. (20 points) Consider the curve

$$y = f(x) = \frac{e^{2x} + e^{-2x}}{4}.$$

(a) (10 points) Calculate the arc length function s(x) starting at x = 0, the length of the curve from (0, f(0)) to (x, f(x)).

(b) (10 points) Calculate the arc length from x = 1 to x = 2.

- 3. (20 points) Consider region between the curves y = x and $y = \sqrt{x}$.
- (a) Find the volume of the solid of revolution about the x-axis.

(b) Find the volume of the solid of revolution about the y-axis.

4. (20 points)

(a) (10 points) Use integration by parts to find a formula for

$$\int x^{2n} \sin x \, dx$$
 in terms of $\int x^{2n-2} \sin x \, dx$

(b) (10 points) Use this formula to find

 $\int x^4 \sin x \, dx.$

5. (20 points) (a) (10 points) Find the integral

$$\int_{-3}^{1} \frac{dx}{\sqrt{x^2 + 6x + 25}}$$

(b) (10 points) Find the integral

$$\int_0^3 \sqrt{9 - x^2} dx.$$