Math 162: Calculus IIA

First Midterm Exam ANSWERS October 23, 2007

1. (16 points) Consider the functions $y = x^2$ and $y = 3x$.

(a) Sketch the region enclosed by the graphs of the given functions, and find the area of this region.

(b) Let S be the solid obtained by rotating the above region about the x-axis. Sketch S , along with a typical cross-section of S , and find the volume of S using the washer method (also called the cross-sectional method.)

Solution: (a) A sketch of a similar region is on page 426 in the textbook (page 448 in the 5th edition). The area of the region is

$$
A = \int_0^3 (3x - x^2) dx = \left[\frac{3x^2}{2} - \frac{x^3}{3}\right]_0^3 = \frac{3 \cdot 3^2}{2} - \frac{3^3}{3} = \frac{27}{6} = \frac{9}{2}.
$$

(b) A sketch of a similar solid of revolution is on page 426 in the textbook (448 in the 5th edition). Using washers, the volume is

$$
V = \int_0^3 (\pi (3x)^2 - \pi (x^2)^2) \, dx = \pi \left[\frac{9x^3}{3} - \frac{x^5}{5} \right]_0^3 = \pi \left(\frac{9 \cdot 3^3}{3} - \frac{3^5}{5} \right) = \frac{162\pi}{5}.
$$

2. (16 points) Again consider the functions $y = x^2$ and $y = 3x$.

(a) Let S be the solid obtained by rotating the region bounded by the graphs of these functions about the y-axis. Sketch S , along with a typical cylindrical shell inside S , and find the volume of S using the cylindrical shells method.

(b) Let S be the solid obtained by rotating the region bounded by the graphs of these functions about the line $x = -3$. Sketch S and find the volume of S using whichever method you want (washer method or cylindrical shells.)

Solution: (a) A similar problem is done in complete detail in your textbook on page 435 (page 457 of the 5th edition), so we only give the answer here.

$$
V = \int_0^3 (2\pi x)(3x - x^2) dx = 2\pi \int_0^3 (3x^2 - x^3) dx
$$

= $2\pi \left[x^3 - \frac{x^4}{4} \right]_0^3 = 2\pi \left(27 - \frac{81}{4} \right) = \frac{27\pi}{2}$

(b) A similar problem is done using washers in your textbook on page 429 (pages 449-450 in the 5th edition), so we only give the answer here.

$$
V = \int_0^9 \left[\pi (3 + \sqrt{y})^2 - \pi \left(3 + \frac{y}{3} \right)^2 \right] dy
$$

= $\pi \int_0^9 \left(9 + 6\sqrt{y} + y - 9 - 2y - \frac{y^2}{9} \right) dy$
= $\pi \int_0^9 \left(6\sqrt{y} - y - \frac{y^2}{9} \right) dy$
= $\pi \left[4y^{3/2} - \frac{y^2}{2} - \frac{y^3}{27} \right]_0^9 = \pi \left(108 - \frac{81}{2} - 27 \right) = \frac{81\pi}{2}.$

Using cylindrical shells, the radius is $(3 + x)$, the height is $(3x - x^2)$, and the volume is

$$
V = \int_0^3 2\pi (3+x) (3x - x^2) dx = 2\pi \int_0^3 (9x - x^3) dx
$$

= $2\pi \left[\frac{9x^2}{2} - \frac{x^4}{4} \right]_0^3 = 2\pi \left(\frac{81}{2} - \frac{81}{4} \right) = \frac{81\pi}{2}.$

Page 2 of 9

3. (10 points) A rectangular swimming pool is 10 meters long and 4 meters wide, the sides are 2 meters high and the depth of the water is 1.5 meters. How much work is required to pump out all the water over the side? (Note: Use $g = 9.8 \text{m/s}^2$ as the acceleration due to gravity and 1000 kg/m^3 as the desnity of water. Remember that 1 Joule = 1 $kg \frac{m^2}{s^2}$ $rac{n^2}{s^2}$.)

Solution: Let y_i^* be the height of the *i*th layer of water, $0 \leq y_i^* \leq 1.5$. An approximation to volume of the ith layer of water is

$$
V_i \approx \text{(area)}(\text{thickness}) = 40 \Delta y.
$$

The *i*th layer of water must travel a vertical distance of $2 - y_i^*$ to the top of the tank. Thus, the amount of work done pumping the water out of the tank is

$$
W = \lim_{n \to \infty} \sum_{i=1}^{n} (\text{density})(\text{volume})(\text{acceleration})(\text{distance})
$$

=
$$
\lim_{n \to \infty} \sum_{i=1}^{n} (1000)(40\Delta y)(9.8)(2 - y_i^*)
$$

= 392000 $\int_0^{1.5} (2 - y) dy$
= 392000 $\left[2y - \frac{y^2}{2}\right]_0^{1.5}$
= 392000 $\left(3 - \frac{9}{8}\right)$
= 392000 $\frac{15}{8}$
= 735000 Joules.

One could also define y to be the diatance from the top of the pool rrtaher than the bottom. Then theintegarl above would be replaced by

$$
\int_{.5}^{2} y \, dy = \left[\frac{y^2}{2} \right]_{.5}^{2} = 2 - \frac{1}{8} = \frac{15}{8},
$$

giving the answer as before.

Page 3 of 9

4. (15 points) Evaluate the following integrals:

(a)
$$
\int x^2 \cos(x^3 + 26) dx
$$

(b) $\int^{2e} \frac{1}{(1-x^3)} dx$

(b)
$$
\int_{e} \frac{1}{x(\ln x)^{3}} dx
$$

(c) $\int x^{5} \sqrt{1+x^{2}} dx$

Solution: (a) Let $u = x^3 + 26$, then $du = 3x^2 dx$ and

$$
\int x^2 \cos(x^3 + 26) dx = \frac{1}{3} \int \cos(u) du
$$

= $\frac{1}{3} [\sin(u)] + C$
= $\frac{\sin(x^3 + 26)}{3} + C$

Solution: (b) Let $u = \ln x$, then $du = \frac{1}{x}$ $\frac{1}{x} dx$ and when $x = 2e$, $u = \ln(2e) = 1 + \ln(2)$, when $x = e, u = 1$, and

$$
\int_{e}^{2e} \frac{1}{x(\ln x)^{3}} dx = \int_{1}^{1+\ln(2)} \frac{1}{u^{3}} du
$$

= $-\frac{1}{2u^{2}}\Big|_{1}^{1+\ln(2)}$
= $-\frac{1}{2(1+\ln(2))^{2}} - \left(-\frac{1}{2}\right)$
= $\frac{1}{2} - \frac{1}{2(1+\ln(2))^{2}}$

Page 4 of 9

Solution: (c) Let $u = 1 + x^2$, then $du = 2x dx$, $x^2 = u - 1$, and

$$
\int x^5 \sqrt{1+x^2} \, dx = \int x^4 \sqrt{1+x^2} \, x \, dx
$$

\n
$$
= \frac{1}{2} \int (u-1)^2 \sqrt{u} \, du
$$

\n
$$
= \frac{1}{2} \int (u^2 - 2u + 1)u^{1/2} \, du
$$

\n
$$
= \frac{1}{2} \int u^{5/2} - 2u^{3/2} + u^{1/2} \, du
$$

\n
$$
= \frac{1}{2} \left[\frac{2}{7} u^{7/2} - 2 \frac{2}{5} u^{5/2} + \frac{2}{3} u^{3/2} \right] + C
$$

\n
$$
= \frac{u^{7/2}}{7} - \frac{2u^{5/2}}{5} + \frac{u^{3/2}}{3} + C
$$

\n
$$
= \frac{(1+x^2)^{7/2}}{7} - \frac{2(1+x^2)^{5/2}}{5} + \frac{(1+x^2)^{3/2}}{3} + C
$$

\n
$$
= \frac{(1+x^2)^{\frac{3}{2}} (8 - 12x^2 + 15x^4)}{105} + C
$$

5. (15 points) Evaluate the following integrals:

(a)
$$
\int x^2 e^x dx
$$

\n(b) $\int x \sin x dx$
\n(c) $\int \arctan(2x) dx$

Solution: (a) Use integration by parts with $u = x^2$ and $dv = e^x dx$, then $du = 2x dx$ and $v = e^x$ and

$$
\int x^2 e^x dx = x^2 e^x - 2 \int x e^x dx
$$

Using integration by parts a second time with $u = x$ and $dv = e^x dx$, then $du = dx$ and $v = e^x$, the integral becomes:

$$
x^{2}e^{x} - 2\left(xe^{x} - \int e^{x} dx\right) = x^{2}e^{x} - 2[xe^{x} - e^{x}] + C
$$

$$
= (x^{2} - 2x + 2)e^{x} + C
$$

Solution: (b) Use integration by parts with $u = x$ and $dv = \sin x \, dx$, then $du = dx$ and $v = -\cos x$ and

$$
\int x \sin x \, dx = -x \cos x + \int \cos x \, dx
$$

$$
= -x \cos x + \sin x + C
$$

Solution: (c) Use integration by parts with $u = \arctan(2x)$ and $dv = dx$, then $du = \frac{2}{1+t^2}$ $1+(2x)^2$ and $v = x$ and

$$
\int \arctan(2x) dx = x \arctan(2x) - 2 \int \frac{x}{1 + (2x)^2} dx
$$

$$
= x \arctan(2x) - 2 \int \frac{x}{1 + 4x^2} dx
$$

Now using the subsitution $u = 4x^2$, then $du = 8x dx$ and the integral becomes:

$$
x \arctan(2x) - \frac{1}{4} \int \frac{1}{1+u} du = x \arctan(2x) - \frac{1}{4} \ln|1+u| + C
$$

$$
= x \arctan(2x) - \frac{1}{4} \ln|1+4x^2| + C
$$

Page 6 of 9

6. (14 points) Evaluate the following integrals:

- (a) \int^{10} 0 1 $\frac{1}{\sqrt[3]{x-10}}$ dx
- (b) $\int \sin^5 \theta \cos^{10} \theta \ d\theta$

Solution: (a) This is an improper integral:

$$
\int_0^{10} \frac{1}{\sqrt[3]{x-10}} dx = \lim_{b \to 10^-} \int_0^b \frac{1}{\sqrt[3]{x-10}} dx
$$

Now, let $u = x - 10$, then $du = dx$ and when $x = 0$, $u = -10$, when $x = b$, $u = b - 10$. Now the integral becomes:

$$
\lim_{b \to 10^{-}} \int_{-10}^{b-10} u^{-1/3} du = \lim_{b \to 10^{-}} \frac{3}{2} u^{2/3} \Big|_{-10}^{b-10} = \lim_{b \to 10^{-}} \frac{3}{2} \left[(b-10)^{2/3} - (-10)^{2/3} \right] = -\frac{3}{2} 10^{2/3}
$$

Solution: (b) Notice that the power of sin is odd, so we factor out $\sin \theta$ and write everything in terms of $\cos \theta$:

$$
\int \sin^5 \theta \cos^{10} \theta \, d\theta = \int \sin^4 \theta \cos^{10} \theta \sin \theta \, d\theta
$$

$$
= \int (\sin^2 \theta)^2 \cos^{10} \theta \sin \theta \, d\theta
$$

$$
= \int (1 - \cos^2 \theta)^2 \cos^{10} \theta \sin \theta \, d\theta
$$

Now let $u = \cos \theta$, then $du = -\sin \theta d\theta$ and

$$
\int \sin^5 \theta \cos^{10} \theta \, d\theta = -\int (1 - u^2)^2 u^{10} du
$$

= $-\int (1 - 2u^2 + u^4) u^{10} du$
= $-\int (u^{10} - 2u^{12} + u^{14}) du$
= $-\left[\frac{u^{11}}{11} - \frac{2u^{13}}{13} + \frac{u^{15}}{15}\right] + C$
= $-\left[\frac{\cos^{11} \theta}{11} - \frac{2 \cos^{13} \theta}{13} + \frac{\cos^{15} \theta}{15}\right] + C$
= $-\frac{\cos^{11} \theta}{11} + \frac{2 \cos^{13} \theta}{13} - \frac{\cos^{15} \theta}{15} + C$

Page 7 of 9

7. (14 points) Evaluate the following integrals.

(a) $\int \frac{1}{\sqrt{12}}$ $\frac{1}{\sqrt{49+x^2}}$ dx

(b) $\int \frac{1}{2+9}$ $\frac{1}{x^2+8x+15} dx$

Solution: (a) Use the trigonometric subsitution $x = 7 \tan \theta$, then $d\theta = 7 \sec^2 \theta$, and

$$
\int \frac{1}{\sqrt{49 + x^2}} dx = \int \frac{1}{\sqrt{49 + 49 \tan^2 \theta}} 7 \sec^2 \theta d\theta
$$

$$
= \int \frac{1}{\sqrt{49(1 + \tan^2 \theta)}} 7 \sec^2 \theta d\theta
$$

$$
= \int \frac{1}{\sec \theta} \sec^2 \theta d\theta
$$

$$
= \int \sec \theta d\theta
$$

$$
= \int \sec \theta \frac{\sec \theta + \tan \theta}{\sec \theta + \tan \theta} d\theta
$$

$$
= \int \frac{\sec^2 \theta + \sec \theta \tan \theta}{\sec \theta + \tan \theta} d\theta
$$

Now let $u = \sec \theta + \tan \theta$, then $du = \sec^2 \theta + \sec \theta \tan \theta$ and

$$
\int \frac{1}{\sqrt{49 + x^2}} dx = \int \frac{\sec^2 \theta + \sec \theta \tan \theta}{\sec \theta + \tan \theta} d\theta
$$

$$
= \int \frac{1}{u} du
$$

$$
= \ln|u| + C
$$

$$
= \ln|\sec \theta + \tan \theta| + C
$$

And since $x = 7 \tan \theta$, then $\tan \theta = \frac{x}{7}$ $\frac{x}{7}$ and using a right triangle (or $\tan^2 \theta + 1 = \sec^2 \theta$) we get sec $\theta = \frac{\sqrt{x^2+49}}{7}$ $\frac{2+49}{7}$. Now:

$$
\int \frac{1}{\sqrt{49 + x^2}} dx = \ln|\sec \theta + \tan \theta| + C
$$

$$
= \ln \left| \frac{\sqrt{x^2 + 49}}{7} + \frac{x}{7} \right| + C
$$

Page 8 of 9

Solution: (b) Factorizing the denominator we can re-write the integral

$$
\int \frac{1}{x^2 + 8x + 15} \, dx = \int \frac{1}{(x+3)(x+5)} \, dx
$$

Now using partial fractions:

$$
\frac{1}{(x+3)(x+5)} = \frac{A}{x+3} + \frac{B}{x+5} = \frac{A(x+5) + B(x+3)}{(x+3)(x+5)}
$$

Since the denominators are the same we can find A and B by setting the numerators equal to each other:

$$
1 = A(x+5) + B(x+3)
$$

This equation holds for all real numbers in particular for $x = -5$ we get $B = -\frac{1}{2}$ $\frac{1}{2}$ and for $x = -3$ we get $A = \frac{1}{2}$ $\frac{1}{2}$. Now the integral becomes:

$$
\int \frac{1}{x^2 + 8x + 15} dx = \int \frac{1}{2(x+3)} - \frac{1}{2(x+5)} dx
$$

$$
= \frac{1}{2} \int \frac{1}{x+3} dx - \frac{1}{2} \int \frac{1}{x+5} dx
$$

$$
= \frac{1}{2} \ln|x+3| - \frac{1}{2} \ln|x+5| + C
$$