Math 162: Calculus IIA

First Midterm Exam October 23, 2007

NAME (please print legibly): _____

Your University ID Number: _____

Indicate your instructor with a check in the box:

Juan Ortiz-Navarro	MWF 9:00 - 9:50 AM	
Doug Ravenel	MWF 10:00 - 10:50 AM	

- The presence of calculators, cell phones, iPods and other electronic devices at this exam is strictly forbidden.
- Show your work and justify your answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- Put your answers in the space provided at the bottom of each page.
- You are responsible for checking that this exam has all 8 pages.

QUESTION	VALUE	SCORE
1	16	
2	16	
3	10	
4	15	
5	15	
6	14	
7	14	
TOTAL	100	

1. (16 points) Consider the functions $y = x^2$ and y = 3x.

(a) Sketch the region enclosed by the graphs of the given functions, and find the area of this region.

(b) Let S be the solid obtained by rotating the above region about the x-axis. Sketch S, along with a typical cross-section of S, and find the volume of S using the washer method (also called the cross-sectional method.)

2. (16 points) Again consider the functions $y = x^2$ and y = 3x.

(a) Let S be the solid obtained by rotating the region bounded by the graphs of these functions about the y-axis. Sketch S, along with a typical cylindrical shell inside S, and find the volume of S using the cylindrical shells method.

(b) Let S be the solid obtained by rotating the region bounded by the graphs of these functions about the line x = -3. Sketch S and find the volume of S using whichever method you want (washer method or cylindrical shells.)

3. (10 points) A rectangular swimming pool is 10 meters long and 4 meters wide, the sides are 2 meters high and the depth of the water is 1.5 meters. How much work is required to pump out all the water over the side? (Note: Use $g = 9.8m/s^2$ as the acceleration due to gravity and 1000 kg/m^3 as the desnity of water. Remember that 1 Joule = 1 $kg\frac{m^2}{s^2}$.)

4. (15 points) Evaluate the following integrals:

(a)
$$\int x^2 \cos(x^3 + 26) dx$$

(b)
$$\int_{e}^{2e} \frac{1}{x(\ln x)^3} dx$$

(c)
$$\int x^5 \sqrt{1+x^2} \, dx$$

5. (15 points) Evaluate the following integrals:

(a)
$$\int x^2 e^x dx$$

(b)
$$\int x \sin x \, dx$$

(c)
$$\int \arctan(2x) dx$$

6. (14 points) Evaluate the following integrals:

(a)
$$\int_0^{10} \frac{1}{\sqrt[3]{x-10}} dx$$

(b)
$$\int \sin^5 \theta \cos^{10} \theta \ d\theta$$

7. (14 points) Evaluate the following integrals.

(a)
$$\int \frac{1}{\sqrt{49+x^2}} dx$$

(b)
$$\int \frac{1}{x^2 + 8x + 15} dx$$