Monotonic	If $a_1, a_2, a_3, \ldots, a_n, \ldots$ is an increasing (monotonic) sequence of num-
Sequence	bers, always smaller than some number M (i.e. $a_n < M < \infty$), then
\mathbf{Thm}	the sequence converges. That is, $\lim_{n\to\infty} a_n$ exists.

If $\lim_{n\to\infty} a_n \neq 0$, then the series $\sum a_n$ diverges. Test for divergence

Geometric Series

$\sum^{\infty} ar^{n-1}$	$ r < 1$: The series converges to $\frac{a}{1-r}$.
$\sum_{n=1}^{\infty} \alpha_n$	$ r \geq 1$: The series diverges.

(Note, if we replace r^{n-1} with r^n , the series will still converge when |r| < 1, but now to $\frac{ar}{1-r}$.)

p-series We used the integral test to see that when

 $\sum_{n=1}^{\infty} \frac{1}{n^p}$ p > 1, the series converges. $p \leq 1$, the series diverges.

Applies when $a_n = f(n)$, and f(x) is a continuous, positive, decreasing Integral function on $[1,\infty)$. In this case the series $\sum a_n$ converges if and only if Test the integral $\int_{1}^{\infty} f(x) dx$ does.

Applies so long as a_n and b_n are always positive. Comparison Test (i) If $a_n \leq b_n$ and $\sum b_n$ converges, then so does $\sum a_n$.

(ii) If $a_n \ge b_n$ and $\sum b_n$ diverges, then so does $\sum a_n$.

Limit	Applies so long as a_n and b_n are always positive. If
Comparison	a
Test	$\lim_{n \to \infty} \frac{a_n}{b_n} = c > 0$
	$n \rightarrow \infty \ b_n$

(c can't be ∞), then $\sum a_n$ converges if and only if $\sum b_n$ converges.

Alternating Series Test

Applies when $b_n \ge 0$: If

 $\sum_{n=1}^{\infty} (-)^{n-1} b_n$

(i) $b_{n+1} < b_n$, and (ii) $\lim_{n\to\infty} b_n = 0;$

then the series converges. (O.K. to replace $(-1)^{n-1}$ with $(-1)^n$.)

Ratio Test	Study this limit:
$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right $	• When the limit exists and is <i>less than</i> 1, the series $\sum a_n$ is absolutely convergent (and convergent).
	• When the limit exists and is <i>greater than</i> 1 (or if the limit diverges to infinity) the series diverges.
	\circ When the limit is equal to 1, the ratio test is useless.
RootTest	Study this limit:
$\lim_{n \to \infty} \sqrt[n]{ a_n }$	• When the limit exists and is <i>less than</i> 1, the series $\sum a_n$ is absolutely convergent (and convergent).
	• When the limit exists and is <i>greater than</i> 1 (or if the limit diverges to infinity) the series is divergent.
	\circ When the limit is equal to 1, the root test is useless.

Which test when? (A rough guide)

- (1) If you can see easily that $\lim_{n\to\infty} a_n \neq 0$, apply the test for divergence.
- (2) Is $\sum a_n$ a *p*-series or geometric series? If yes, apply those tests.
- (3) If $\sum a_n$ is close to a *p*-series or geometric series, try one of the comparison tests.
- (4) If $a_n = f(n)$ and $\int_1^{\infty} f(x) dx$ is easily evaluated, use the integral test.
- (5) If the series is of the form $\sum (-1)^{n-1} b_n$ or $\sum (-1)^n b_n$ try the alternating series test.
- (6) Series involving factorials (e.g. n!) or n^{th} powers of a constant (e.g. 4^n) can often be studied with the ratio test.
- (7) When a_n looks like $(\cdots)^n$, and the term inside the parenthesis *also* involves *n*, try the root test.