
Math 162: Calculus IIA
Final Exam ANSWERS

May 8, 2019

Part A

1. (20 points)

Find the arc length L of the parametric curve, x = 2t, y = 4 ln((t/2)2 − 1), from t = 6 to
t = 7.
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Answer:

dx/dt = 2, dy/dt = 8t/(t2 − 4).

So
(dx/dt)2 + (dy/dt)2 = 4 + (64t2)/(t2 − 4)2.

Hence

(dx/dt)2+(dy/dt)2 = 4+(64t2)/(t2−4)2) = (4t4+32t2+64)/(t2−4)2 = 4(t2+4)2/(t2−4)2.

Therefore √
(dx/dt)2 + (dy/dt)2 = 2(t2 + 4)/(t2 − 4) = 2 + 16/(t2 − 4).

Using partial fractions, 16/(t2 − 4) = −4/(t+ 2) + 4/(t− 2), so√
(dx/dt)2 + (dy/dt)2 = 2− 4/(t+ 2) + 4/(t− 2),
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and

L =

∫ 7

6

√
(dx/dt)2 + (dy/dt)2dt =

∫ 7

6

(2− 4/(t+ 2) + 4/(t− 2))dt

= [2t− 4 ln(t+ 2) + 4 ln(t− 2)]76 = 2− 4 ln 9 + 4 ln 8 + 4 ln 5− 4 ln 4

= 2 + 4 ln(10/9)

2. (20 points) Compute ∫
1√

1 + (6x− 4)2)
dx

Answer:

Make the trig substitution 6x− 4 = tan(θ). Then 6dx = sec2(θ)dθ and x = (tan θ+4)/6. So∫
1√

1 + (6x− 4)2)
dx = 1/6

∫
sec2 θdθ√
1 + tan2 θ

= 1/6

∫
sec2 θdθ

sec θ

= 1/6

∫
sec θdθ = 1/6 ln | sec θ + tan θ|.

We have that tan θ = 6x− 4, so

sec θ =
√

1 + tan2 θ =
√
1 + (6x− 4)2 =

√
36x2 − 48x+ 17.

Hence ∫
1√

1 + (6x− 4)2)
dx = 1/6 ln |6x− 4 +

√
36x2 − 48x+ 17|+ C.

3. (20 points)

(a) Compute the volume of a region bounded by the curves y = x4+1, y = 1 and x = 1 and
rotated around the y-axis.
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Answer:

Using the shell method we have shells of radius x, thickness dx and height (x4+1)− 1 = x4.
Therefore

V =

∫ 1

0

2πx · x4dx = 2π
x6

6

∣∣∣∣1
0

=
π

3

(b) Set up the integral for the volume of the region bounded by y = x3, y = 0 and x = 2

and rotated around line x = 2. Use the shell method. Do not evaluate the integral.
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Answer:

Using the shell method we have shells of radius (2 − x), thickness dx and height x3. Thus
the volume is

V =

∫ 2

0

2π(2− x)x3 dx.
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4. (10 points)

Evaluate the integral ∫
arctan(2x)dx.

Answer:

Using integration by parts with u = arctan(2x) and dv = dx yields du = 2
1+4x2 and v = x,

so we have ∫
arctan(2x)dx = x arctan(2x)−

∫
2x

1 + 4x2
dx

then a substitution of w = 1 + 4x2, dw = 8xdx yields∫
2x

1 + 4x2
dx =

1

4

∫
dw

w
=

1

4
ln |w| − C =

1

4
ln(1 + 4x2)− C

thus ∫
arctan(2x)dx = x arctan(2x)− 1

4
ln(1 + 4x2) + C.

5. (20 points)

(a) Find the partial fraction decomposition of

x2 + 3x

x2 − 4
.

Answer:

The fraction is improper so first use long division to write:

x2 + 3x

x2 − 4
= 1 +

3x+ 4

x2 − 4
.

Since the denominator is a difference of squares x2−4 = (x−2)(x+2) we next seek constants
A,B such that:

3x+ 4

x2 − 4
=

A

x− 2
+

B

x+ 2
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which is equivalent to solving the linear system:

A+B = 3

2A− 2B = 4

Adding the first equation to half of the second gives 2A = 5 so A = 5/2 and therefore
B = 1/2. Thus:

x3 + 3x

x2 − 4
= 1 +

5/2

x− 2
+

1/2

x+ 2
= 1 +

5

2x− 4
+

1

2x+ 4
.

(b) Write out the form of the partial fraction decomposition of the function

x3 − 5

(x+ 1)3(x2 + 4)2(x− 1)
=

Do not determine the numerical values of the coefficients.

Answer:

All the factors are linear except x2 + 4, which has discriminant b2 − 4ac = −16 < 0 (has
complex roots ±2i) so does not factor over the real numbers. Thus there is a linear factor
of multiplicity 3, an irreducible quadratic factor of multiplicity 2 and a linear factor of
multiplicity 1. So the partial fraction decomposition will look like:

x3 − 2

(x+ 1)3(x2 + 1)2(x− 1)
=

A1

x+ 1
+

A2

(x+ 1)2
+

A3

(x+ 1)3
+

B1x+ C1

x2 + 4
+

B2x+ C2

(x2 + 4)2
+

D

x− 1
.

(c) Let
f(x) =

1

x− 1
+

2x+ 3

x2 + 1
.

Evaluate ∫
f(x)dx.

Answer:
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Split the integral: ∫
f(x)dx =

∫
1

x− 1
dx+

∫
2x

x2 + 1
dx+

∫
3

x2 + 1
dx

= ln |x− 1|+
∫

2x

x2 + 1
dx+ 3arctan x

Substitute u = x2 + 1 and hence du = 2xdx to get:∫
f(x)dx = ln |x− 1|+ ln |x2 + 1|+ 3arctan(x) + C.

6. (15 points)

Find the area inside the outer (larger) loop but outside the inner (smaller) loop of the limaçon
r = 1 + 2 cos(θ).
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Answer:

The curve intersects itself when the radius equals zero, or 2 cos(θ) = −1, which means
cos(θ) = −1

2
. We know cos−1(−1

2
) = 2π

3
so the points of intersection are θ1 =

2π
3

and θ2 =
4π
3

.
The outer loop is traced out from −2π

3
to 2π

3
and contains area A1, while the inner loop is

traced out from 2π
3

to 4π
3

(with negative radius) and contains area A2. The desired area is
then A = A1 − A2. First, we compute the indefinite integral∫

(1 + 2 cos(θ))2 dθ =

∫
(1 + 4 cos(θ) + 4 cos2(θ)) dθ =

∫
(1 + 4 cos(θ) + 2(1 + cos(2θ))) dθ

=

∫
(3 + 4 cos(θ) + 2 cos(2θ)) dθ = 3θ + 4 sin(θ) + sin(2θ).
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Then we compute the two separate areas (since they are traced out for different intervals)

A1 =

∫ 2π/3

−2π/3

1

2
r2 dθ = 2

∫ 2π/3

0

1

2
(1 + 2 cos(θ))2 dθ

= [3θ + 4 sin(θ) + sin(2θ)]
2π/3
0 = 2π +

3
√
3

2

A2 =

∫ 4π/3

2π/3

1

2
r2 dθ = 2

∫ π

2π/3

1

2
(1 + 2 cos(θ))2 dθ

= [3θ + 4 sin(θ) + sin(2θ)]π2π/3 = π − 3
√
3

2

A = A1 − A2 = π + 3
√
3.

Part B

7. (20 points)

(a) Determine whether the series
∞∑
n=1

(−1)n+1 1

n6

is absolutely convergent, conditionally convergent, or divergent.

Answer:

The series converges by the alternating series test. It converges absolutely by the intgeral
test or the p-test.

(b) Estimate the sum of the series with an accuracy of .01 = 1/100.

Answer:

The alternating series is

1− 1

26
+

1

36
+ · · · = 1− 1

64
+

1

729
+ · · ·

Its third terms is less that .005 = 1/200, so the sum of the first two terms will give the
desired precision. That sum is

1− 1

64
=

63

64
= .984375.

8. (20 points)
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(a) Find a power series representation centered at −1 as well as the radius and interval of
convergence for the function

f(x) =
x+ 1

x− 1

Answer:

Write f(x) as the sum a
1−r

of a geometric series
∑∞

n=1 ar
n−1.

f(x) =
x+ 1

x− 1
=

−1
2
(x+ 1)

1− (x+1
2
)
=

∞∑
n=1

(−1

2

)
(x+ 1)

(x+ 1

2

)n−1

=
∞∑
n=1

(−1)

2n
(x+ 1)n

This converges if and only if |r| < 1, i.e. if and only if

| r |= | x+ 1 |
2

< 1 ⇐⇒| x+ 1 |< 2.

It follows that the radius of convergence is 2 and the interval of convergence is (−3, 1).

(b) Write the following integral as a power series in x+1. What is the radius of convergence
of this power series? ∫

x+ 1

x− 1
dx

Answer:

Using term-by-term integration, for | x+ 1 |< 2 we have∫
x+ 1

x− 1
dx =

∫ ∞∑
n=1

(−1)

2n
(x+ 1)ndx

=
∞∑
n=1

∫
(−1)

2n
(x+ 1)ndx

= C +
∞∑
n=1

(−1)

(n+ 1)2n
(x+ 1)n+1

which has radius of convergence 2.

9. (20 points)

Determine whether the series is absolutely convergent, conditionally convergent, or divergent.
∞∑
n=2

(−1)n

n− lnn
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Answer:

First, consider the series
∞∑
n=2

∣∣∣∣ (−1)n

n− lnn

∣∣∣∣ = ∞∑
n=2

1

n− lnn

for absolute convergence. Since n > n− lnn for n ≥ 2,
1

n− lnn
≥ 1

n
.

We also know that the harmonic series
∑∞

n=2
1
n

diverges by the p-series test with p = 1.
Therefore, it follows from the comparison test that the series diverges.

Now, we consider the series
∞∑
n=2

(−1)n

n− lnn

for conditional convergence. It is an alternating series satisfying

lim
n→∞

1

n− lnn
= 0.

Since (
1

x− lnx

)′

= − 1− 1/x

(x− lnx)2
< 0

for x ≥ 2, we know that 1
n−lnn

is a decreasing for n ≥ 2. So by the Alternating Series test,
the original series converges.

Therefore, the series is a conditionally convergent series.

10. (20 points)

Find the radius of convergence and interval of convergence of the series
∞∑
n=1

2n(x− 3)n√
n

.

Answer:

We use the ratio test:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

2n+1|x− 3|n+1

√
n+ 1

·
√
n

2n|x− 3|n

= lim
n→∞

2 ·
√
n√

n+ 1
· |x− 3| = 2|x− 3|.
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From
2|x− 3| < 1 ⇔ |x− 3| < 1

2
,

the radius of convergence R = 1/2.

Now consider the boundary case x = 5/2 or x = 7/2. Plugging x = 5/2 in original series
expression, we get

∞∑
n=1

(−1)n√
n

,

which converges by the alternating series test.

Plugging x = 7/2 in original series expression, we get

∞∑
n=1

1√
n
,

which diverges by the p-series test with p = 1/2 < 1.

So the interval of convergence is [5/2, 7/2).

11. (20 points) Let f(x) =
x

x2 + 4
.

(a) Find a power series expansion for f(x) about x = 0. Write it in the form
∞∑
n=0

(−1)enanx
pn .

Answer:

x

x2 + 4
=

x/4

1− (−x2

4
)
=

∞∑
n=0

x

4

(
−x2

4

)n

=
∞∑
n=0

(−1)n

4n+1
x2n+1

so en = n, an = 1
4n+1 , and pn = 2n+ 1.

(b) Find the radius and interval of convergence for the series you found in (a).

Answer:

This is a geometric series with |r| = |x2

4
| so it converges absolutely when |x2

4
| < 1 or |x| <

2 and diverges otherwise (note that because it’s geometric, we do not need to check the
endpoints; we know it diverges at both endpoints). Thus, the radius of convergence is
R = 2, and the interval of convergence is (−2, 2).

(c) Find f (5)(0) and f (10)(0).
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Answer:

f (5)(0) = 5! · c5 = 5!
43

(Note: use n = 2 in the series to find c5)
f (10)(0) = 10! · c10 = 10! · 0 = 0 (Note: the series has only odd powers of x, so all even-index
coefficients are zero.)
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Scratch paper
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More scratch paper
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And even more scratch paper
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