
Math 162: Calculus IIA

Final Exam ANSWERS

December 17, 2009

Part A

1. (20 points)

(a) Find the partial fraction expansion of

−3x− 2

x3 − x2 + 4x− 4
.

(b) Calculate the integral ∫
−3x− 2

x3 − x2 + 4x− 4
dx.

Note: The first part of this problem was designed to help you do the second part. If you

did the first part incorrectly, you will not get partial credit for “correctly” using the wrong

partial fraction expansion to find the integral.

Solution: (a) The only real root of the denominator is 1, and from polynomial division we

get x3 − x2 + 4x− 4 = (x− 1)(x2 + 4). This means that

−3x− 2

x3 − x2 + 4x− 4
=

A

(x− 1)
+
Bx+ C

x2 + 4

Putting the right hand side on a common denominator we get

−3x− 2

x3 − x2 + 4x− 4
=

(A+B)x2 + (C −B)x+ 4A− C
x3 − x2 + 4x− 4

and equating coefficients yields the equations A + B = 0, C − B = −3 and 4A − C = −2,

which have the solution A = −1, B = 1 and C = −2.

Solution: (b) From (a) we get∫
−3x− 2

x3 − x2 + 4x− 4
dx =

∫
−1

(x− 1)
+

x− 2

x2 + 4
dx =

∫
−1

(x− 1)
+

x

x2 + 4
− 2

x2 + 4
dx.

We have
∫ −1

(x−1)
dx = − ln |x − 1| + C1. By substituting u = x2 + 4 we have

∫
x

x2+4
dx =

1
2

ln |x2 + 4|+C2. Finally we substitute x = 2 tan(θ) and dx = 2 sec2(θ)dθ in the last integral

to get ∫
−2

x2 + 4
dx =

∫
−2

2 sec2(θ)

4 sec2(θ)
dθ = − arctan(

x

2
) + C3.
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Combining this we get∫
−3x− 2

x3 − x2 + 4x− 4
dx = − ln |x− 1|+ 1

2
ln |x2 + 4| − arctan(

x

2
) + C.
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2. (20 points)

Evaluate the integral ∫ √
4− x2

x2
dx

Solution: We let x = 2 sin(θ), where −π/2 ≤ θ ≤ π/2. Then dx = 2 cos(θ) dθ and

√
4− x2 =

√
4− 4 sin2(θ) =

√
4 cos2(θ) = 2| cos(θ)| = 2 cos(θ)

since cos(θ) ≥ 0 on the interval −π/2 ≤ θ ≤ π/2. This means that∫ √
4− x2

x2
dx =

∫
2 cos(θ)

4 sin2(θ)
2 cos(θ) dθ

=

∫
cos2(θ)

sin2(θ)
dθ

=

∫
cot2(θ) dθ

=

∫
csc2(θ)− 1 dθ

= − cot(θ)− θ + C.

Consider θ as the angle in a right triangle, then sin(θ) = x
2
, and so we label the opposite side

and hypotenuse as having lengths x and 2. From the Pythagorean theorem we get

cot(θ) =

√
4− x2

x
.

The result is then ∫ √
4− x2

x2
dx = −

√
4− x2

x
− arcsin(

x

2
) + C.
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3. (15 points)

Rotate the region bounded by y = 0, y = e−x
2
, x = 0 and x = 1 around the y-axis. Compute

the volume of the resulting body.

Solution: This is best done with shells. The height is e−x
2
, the circumference is 2πx and

the thickness is dx. So we get

V =

∫ 1

0

2πx e−x
2

dx = 2π

∫ 1

0

x e−x
2

dx

To calculate this we substitute u = −x2 and get du = − dx
2x

. Hence

V = 2π

∫ 1

0

x e−x
2

dx

= 2π

∫ −1

0

eu
−du

2

= π

∫ 0

−1

eu du

= π[eu]0−1

= π(1− 1

e
).
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4. (15 points)

A cylindrical well has radius 1m and depth 5m. The depth of the water in the well is

3m. How much work (in Joules) is required to empty the well? The density of water is

1000kg/m3 and g = 9.8m/sec2. You may assume 9.8 · π = 31. A Joule is the metric unit of

work, 1J = 1kg ·m2/sec2

Solution: The work require to pump out a layer of water of thickness ∆x at height x below

the surface of the water is F · d = volume · density · g · (x + 2). The volume of a layer of

water of thickness ∆x is π ·∆x and so F · d = π ·∆x · 1000 · 9.8 · (x + 2). The total work

required is then

W = 1000 · 9.8π
∫ 3

0

x+ 2 dx

= 31000

[
1

2
x2 + 2x

]3

0

= 325500J.

Page 5 of 12



December 15, 2009 Final Exam Math 162 (Calculus IIA)

5. (10 points)

Find the area of the region bounded by y = sin(x) and y = cos(x) for 0 ≤ x ≤ π/4.

Solution: First we note that cos(x) ≥ sin(x) for 0 ≤ x ≤ π/4. We get

A =

∫ π/4

0

cos(x)− sin(x) dx

= [sin(x) + cos(x)]π/40

=
1√
2

+
1√
2
− 1

=
√

2− 1.
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6. (20 points)

The cycloid is the curve defined by x(t) = r(t − sin(t)) and y(t) = r(1 − cos(t)), where r

is a constant. Find the arclength of the cycloid for 0 ≤ t ≤ 2π. You may use the identity

sin2(t) = (1− cos(2t))/2.

Solution: We first note that dx/dt = r(1−cos t) and dy/dt = r sin t. The arclength is given

by

L =

∫ 2π

0

√(
dx

dt

)2

+

(
dy

dt

)2

dt

=

∫ 2π

0

√
r2(1− cos t)2 + r2(t/2) sin t dt

=

∫ 2π

0

√
r2(1− 2 cos t+ cos2(t) + sin2 t) dt

= r

∫ 2π

0

√
2(1− cos t) dt

= r

∫ 2π

0

√
4 sin2(t/2) dt

= r

∫ 2π

0

2| sin(t/2)| dt

= r

∫ 2π

0

2 sin(t/2) dt

= 2r

∫ 2π

0

sin(t/2) dt

= 2r [−2 cos(t/2)]2π0

= 8r.

We used the fact that sin t ≥ 0 on 0 ≤ t ≤ π so sin(t/2) ≥ 0 on 0 ≤ t ≤ 2π in the seventh

equality.
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Part B

7. (25 points)

(a) Find the power series expansion of 1/(1 + x2), as well as radius and interval of conver-

gence.

(b) Find the power series for arctan(x), as well as the radius and interval of convergence.

Solution: (a) We rewrite 1/(1 + x2) = 1/(1− (−x2)), which we recognize as the sum of the

geometric series

∞∑
n=0

(−x2)n =
∞∑
n=0

(−1)nx2n

The series converges for | − x2| < 1, i.e. |x| < 1.

Solution: (b) We note that ∫
1

1 + x2
dx = arctan(x) + C

so to find the series for arctan(x) we integrate the series from (a). This is done term-wise

arctan(x) =

∫
1

1 + x2
dx

=

∫ ∞∑
n=0

(−1)nx2n

=
∞∑
n=0

(−1)n

2n+ 1
x2n+1 + C.

Since arctan(0) = 0, we see that C = 0, so we get

arctan(x) =
∞∑
n=0

(−1)n

2n+ 1
x2n+1.

By Theorem 2 page 730 the radius of convergence is 1, so we know that the series converges

for all x in (−1, 1). At the point x = 1 we see that the series
∑∞

n=0
(−1)n

2n+1
converges by the

alternating series test. At the point x = −1 we have to see if the series
∑∞

n=0
(−1)n

2n+1
(−1)2n+1

converges. The series
∑∞

n=0
(−1)n

2n+1
(−1)2n+1 can be written as −

∑∞
n=0

(−1)n

2n+1
, which converges

by the alternating series test. The interval of convergence is hence [−1, 1].
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8. (25 points)

(a) Find the Taylor series centered at 0 of the function e−x
2
, as well as radius and interval

of convergence.

(b) Write the integral ∫ x

0

e−t
2

dt

as a power series.

Solution: (a) The Taylor series for ex is

ex =
∞∑
n=0

xn

n!

and so we get

e−x
2

=
∞∑
n=0

(−x2)n

n!

=
∞∑
n=0

(−1)n
x2n

n!

Since the series for ex is convergent for all x, so is the series for e−x
2
.

Solution: (b) We use the series from (a)

∫ x

0

e−t
2

dt =

∫ x

0

∞∑
n=0

(−1)n
t2n

n!
dt

=

[
∞∑
n=0

(−1)n
t2n+1

(2n+ 1)n!

]x
0

=
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)n!
.

This expression is valid for all x > 0, since the series for
∫

e−x
2
dx is convergent for all x.
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9. (15 points)

Find the radius and interval of convergence of the power series

∞∑
n=0

(−1)n
(x+ 2)n

n+ 1
.

Solution: We apply the ratio test.∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣(−1)n+1(x+ 2)n+1

n+ 2

n+ 1

(−1)n(x+ 2)n

∣∣∣∣ = |x+ 2|
(
n+ 1

n+ 2

)
.

Hence we get

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = |x+ 2|.

This means that the series converges for |x+2| < 1 and hence that the radius of convergence

is 1. We then know that the series converges for −3 < x < −1, and it remains to check the

endpoints. For x = −3 we get

∞∑
n=0

(−1)n
(−3 + 2)n

n+ 1
=
∞∑
n=0

(−1)n
(−1)n

n+ 1
=
∞∑
n=0

1

n+ 1

which is a divergent harmonic series. For x = −1 we get

∞∑
n=0

(−1)n
(−1 + 2)n

n+ 1
=
∞∑
n=0

(−1)n
1

n+ 1

which is convergent by the alternating series test. The interval of convergence is then

−3 < x ≤ −1.
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10. (15 points)

Determine whether the series
∞∑
n=2

(−1)n
1

n ln(n)

is absolutely convergent, conditionally convergent or divergent.

Solution: The function f(x) = 1
x ln(x)

, has f ′(x) = − ln(x)−1
(x ln(x))2

, which is negative for x ≥ 2,

so 1
(n+1) ln(n+1)

< 1
n ln(n)

and limn→∞
1

n ln(n)
= 0, by the monotone convergence theorem, since

the sequence is monotone decreasing and bounded by 0 from below (all terms are positive).

The series is convergent by the alternating series test.

To see whether the series is absolutely convergent, we use the integral test. The series is

absolutely convergent if the series
∑∞

n=2
1

n ln(n)
is convergent. By the integral test this is the

case if and only if the improper integral∫ ∞
2

1

x ln(x)
dx

is convergent. ∫ ∞
2

1

x ln(x)
dx =

∫ ∞
ln(2)

x du

xu

=

∫ ∞
ln(2)

1

u
du

= lim
t→∞

ln(t)− ln(2)

= ∞.

where we put u = ln(x) and dx = x du.
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11. (20 points)

(a) Determine whether the series
∞∑
n=0

(−1)n e−n

is absolutely convergent, conditionally convergent or divergent.

(b) Estimate the sum of the series within an accuracy of e−5. You may leave you answer

in terms of powers of e.

Solution: (a) We apply the ratio test.∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣(−1)n+1 e−n−1

(−1)ne−n

∣∣∣∣ =
e−n−1

e−n
= e−1.

Hence limn→∞ =
∣∣∣an+1

an

∣∣∣ = e−1 < 1, so the sequence is absolutely convergent.

Solution: (b) Let s be the sum of the series
∑∞

n=0(−1)nbn and let sn be the n’th partial

sum. The alternating series estimate says that |s− sn| < bn+1. In our case bn = e−n and we

get that |s − s4| < e−5, i.e the difference between s4 and the value of the sum is less than

e−5. It remains to calculate the sum s4: s4 = 1− e−1 + e−2− e−3 + e−4.
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