
Math 162: Calculus IIA

Final Exam ANSWERS

December 3, 2024

Integration by parts formula: ∫
u dv = uv −

∫
v du

Trigonometric identities:

cos2(x) + sin2(x) = 1 sec2(x)− tan2(x) = 1 sin(2x) = 2 sin(x) cos(x)

cos2(x) =
1 + cos(2x)

2
sin2(x) =

1− cos(2x)

2

Derivatives of trig functions.

d sinx

dx
= cosx

d tanx

dx
= sec2 x

d secx

dx
= secx tanx

d cosx

dx
= − sinx

d cotx

dx
= − csc2 x

d cscx

dx
= − cscx cotx

Trigonometric substitution tricks for odd powers of secant and even powers of tangent:

u = sec(θ) + tan(θ) sec(θ)dθ =
du

u

sec(θ) =
u2 + 1

2u
tan(θ) =

u2 − 1

2u

Area of surface of revolution in rectangular coordinates y = f(x) with 0 ≤ a ≤ x ≤ b:

• about the x-axis: S =

∫ b

a

2π|f(x)|
√

1 + [f ′(x)]2 dx.

• about the y-axis: S = 2π

∫ b

a

x
√

1 + [f ′(x)]2 dx.

Polar coordinate formulas.

x = r cos(θ) r2 = x2 + y2
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y = r sin(θ) tan(θ) = y/x

Note: θ = arctan(y/x) when x > 0, and θ = arctan(y/x) + π when x < 0.

Changing θ by any multiple of 2π does not change the location of the point.

Changing the sign of r is equivalent to adding π to θ, which is the same as moving the point

to one in the opposite direction and the same distance from the origin.

Area in polar coordinates for r = f(θ), with α ≤ θ ≤ β:

A =

∫ β

α

r2

2
dθ.

Arc length formulas:

• Rectangular coordinates, y = f(x) with a ≤ x ≤ b:

L =

∫ b

a

√
1 + [f ′(x)]2 dx.

• Polar coordinates, r = f(θ), α ≤ θ ≤ β:

L =

∫ β

α

√
[f(θ)]2 + [f ′(θ)]2 dθ

• Parametric equations, x = x(t), y = y(t) with a ≤ t ≤ b:

L =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt.
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Infinite series formulas

The Maclaurin series for f(x) is
∞∑
n=0

f (n)(0)

n!
xn.

The Taylor series for f(x) at a is

∞∑
n=0

f (n)(a)

n!
(x− a)n.

The nth Taylor polynomial is

Tn(x) =
n∑

i=0

f (i)(a)

i!
(x− a)i,

and the nth Taylor remainder is

Rn(x) = f(x)− Tn(x).

Taylor’s inequality says that if |f (n+1)(x)| ≤ M for suitable x, then

|Rn(x)| ≤
|x− a|n+1M

(n+ 1)!
.
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Part A

1. (20 points) Fix b > 0. Compute the arc length of the polar curve r = ebθ, where

0 ≤ θ ≤ π.

Answer:

Observe that r′ = bebθ and so

L =

∫ π

0

√
(r)2 + (r′)2 dθ

=

∫ π

0

√
(ebθ)2 + b2(ebθ)2 dθ

=

∫ π

0

√
(ebθ)2(1 + b2) dθ

=

∫ π

0

ebθ
√
1 + b2 dθ

=
√
1 + b2

∫ π

0

ebθ dθ

=
√
1 + b2

[
ebθ

b

]π
θ=0

=
√
1 + b2

ebπ − 1

b
.
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2. (20 points)

Consider the function y =
√
x+ 1 on the interval [1, 5].

(a) (10 Points) Compute the volume of the region bound by the curves y =
√
x+ 1,

x = 1, x = 5 and the x-axis, revolved about the x-axis.

Answer:

We can use the Disk (aka Washer) Method:∫ 5

1

π(
√
x+ 1)2dx =

∫ 5

1

π(x+ 1)dx

=π

[
x2

2
+ x

]5
1

=16π

(b) (10 Points) Compute the surface area of the region bound by the curves y =
√
x+ 1,

x = 1, and x = 5, revolved about the x-axis.

Answer:

The derivative of
√
x+ 1 is 1/2

√
x+ 1. So the formula for the surface area is:∫ 5

1

2π
√
x+ 1 ·

√
1 +

1

4(x+ 1)
dx =2π

∫ 5

1

√
x+ 1 +

1

4
dx

=2π

[
2

3
(x+

5

4
)3/2
]5
1

=
4

3
π

(
125

8
− 27

8

)
=
49π

3

3. (20 points) The ionization energy of an atom is the energy required to free an electron

from the atom. For the hydrogen atom, this is given approximately by∫ ∞

R

1

2

kq2

r2
dr

Where R is the initial radius of the electron, k is a constant, and q is the magnitude of the

charges of the electron and proton. Compute the above integral. Your answer should be in

terms of R, k and q. Don’t worry about units.
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Answer:

∫ ∞

R

1

2

kq2

r2
dr = lim

t→∞

∫ t

R

1

2

kq2

r2
dr = lim

t→∞

kq2

2

∫ t

R

1

r2
dr

This then simplifies to

kq2

2

(
lim
t→∞

−1

r

∣∣∣∣t
R

)
=

kq2

2

(
lim
t→∞

1

R
− 1

t

)
=

kq2

2R
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4. (20 points) Evaluate the following integrals.

(a) (10 points.)

∫
x2 ln(x) dx

Answer:

Integrate by parts: Let u = ln(x), du = dx/x and dv = x2 dx, v = 1
3
x3. We get∫

x2 ln(x) dx =

∫
u dv

= uv −
∫

v du

=
1

3
x3 ln(x)−

∫
1

3
x3dx

x

=
1

3
x3 ln(x)−

∫
1

3
x2 dx

=
1

3
x3 ln(x)− 1

9
x3 + C.
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(b) (10 points)

∫
2x+ 1

x3 + x
dx

Answer:

Factor the denominator as x(x2 + 1). The partial fraction decomposition takes the form

2x+ 1

x(x2 + 1)
=

A

x
+

Bx+ C

x2 + 1

So

2x+ 1 = A(x2 + 1) + (Bx+ C)x = (A+B)x2 + Cx+ A.

Equating coefficients of like powers of x shows that A+B = 0, C = 2 and A = 1 (so B = −1.)

Therefore

∫
2x+ 1

x(x2 + 1)
=

∫
1

x
+

−x+ 2

x2 + 1
dx

=

∫
1

x
− x

x2 + 1
+

2

x2 + 1
dx

= ln |x| − 1

2
ln |1 + x2|+ 2arctan(x) + C.
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5. (20 points) A curve C is defined by the parametric equation

x = x(t) = − cos(t), y = y(t) = sin3(t), 0 ≤ t ≤ 2π.

Find the area of the region enclosed by this curve.

Answer:

We find the area A under the curve and above the x-axis from x = −1 to x = 0, and then

multiply by 4 to find the total area enclosed by this curve. [Alternatively, we could find the

area under the curve from x = −1 to x = 1 and multiply by 2.]

We have x = −1 when t = 0 and x = 0 when t = π/2. Also, dx = sin(t)dt and so

A =

∫ 0

−1

y dx

=

∫ π/2

0

sin3(t)(sin(t)) dt

=

∫ π/2

0

sin4(t) dt

=

∫ π/2

0

(
1− cos(2t)

2

)2

dt

=

∫ π/2

0

1

4

(
1− 2 cos(2t) + cos2(2t)

)
dt

=
1

4

∫ π/2

0

1− 2 cos(2t) +
1 + cos(4t)

2
dt

=
1

4

∫ π/2

0

3

2
− 2 cos(2t) + cos(4t) dt

Page 9 of 21



December 13, 2024 Final Exam Math 162 (Calculus IIA)

=
1

4

[
3

2
t− 2

sin(2t)

2
+

sin(4t)

4

]π/2
t=0

=
1

4
· 3π
4

=
3π

16
.

Thus the area enclosed by the region is 4A = 3π/4.
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Part B

6. (10 points) Find the sum of the series
∞∑
n=3

2n − 71−n

en
.

Answer:

Applying the geometric series formula gives

∞∑
n=3

2n/en =
∞∑
n=3

(2/e)n =
(2/e)3

1− (2/e)
,

and
∞∑
n=3

71−n/en =
∞∑
n=3

7/(7e)n = 7
(7e)−3

1− (7e)−1

so that
∞∑
n=3

2n − 71−n

en
=

∞∑
n=3

2n

en
−

∞∑
n=3

71−n

en
=

(2/e)3

1− (2/e)
− 7

(7e)−3

1− (7e)−1
.
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7. (30 points) (10 points each.) For each of the following series, determine if the series

is absolutely convergent, conditionally convergent, or divergent. Justify your answer with

an appropriate convergence/divergence test.

(a)
∞∑
n=1

(−1)n
n2

n3 + 1

Answer:

Conditionally convergent.

Observe that n2/(n3 + 1) → 0 as n → ∞, and that if f(x) = (x2)/(x3 + 1) then

f ′(x) =
(2x)(x3 + 1)− (x2)(3x2)

(x3 + 1)2

=
2x4 + 2x− 3x4

(x3 + 1)2

=
−x4 + 2x

(x3 + 1)2
.

For x sufficiently large, we will have x4 > 2x. (x ≥ 2 suffices.) Therefore f ′(x) < 0 for all

large x and so f(n+1) < f(n) for all sufficiently large n. So the series satisfies the conditions

of the alternating series test and is therefore convergent.

To see that
∑

(n2)/(n3+1) does not converge - and so the series is not absolutely convergent

- apply the limit comparison test with the harmonic series
∑

1/n:

lim
n→∞

n2

n3 + 1

/
1

n
= lim

n→∞
n3/(n3 + 1) = 1 > 0

so that
∑

n2/(n3 + 1) and
∑

1/n either both converge or both diverge. Since
∑

1/n is

divergent, then so is
∑

n2/(n3 + 1). Alternatively, one can also use the integral test here.
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(b)
∞∑
n=2

1

n(ln(n))2

Answer:

Absolutely convergent.

Use the integral test:∫ ∞

2

1

x(lnx)2
dx =

∫ ∞

ln 2

1

u2
du (via the substitution u = lnx.)

= lim
t→∞

−1

u

]t
ln(2)

= lim
t→∞

−1

t
+

1

ln(2)

= 1/ ln(2).

So the integral test implies
∑

1/(n(lnn)2 converges. Since all of the terms in this series are

positive then the series converges absolutely.
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(c)
∞∑
n=1

(
cos(1/n)− 1

)n
Answer:

Absolutely convergent. Apply the root test:

lim
n→∞

|(cos(1/n)− 1)n|1/n = lim
n→∞

| cos(1/n)− 1| = cos(0)− 1 = 0.

Since this limit is strictly less than 1, the series converges absolutely.
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8. (20 points) Let

f(x) =
x2

1 + 2x
.

(a) (10 points.) Find the Taylor series of f(x) centered at x = 0.

Answer:

Write

x2

1 + 2x
=

x2

1− (−2x)

= x2

∞∑
n=0

(−2x)n (using geometric series expansion)

=
∞∑
n=0

(−2)nxn+2.

(b) (10 points.) Find the radius of convergence.

Answer:

One way is to note that f(x) is not defined at x = −1/2. This is a distance of 1/2 away

from the center x = 0. Thus, the radius of convergence will be 1/2. Alternatively, you can

use the Ratio Test:

lim
n→∞

∣∣∣∣(−2)n+1xn+3

(−2)nxn+2

∣∣∣∣ = |2x|

For the series to converge by the Ratio test, we must have |2x| < 1, which means |x| < 1/2.

Thus, again, the radius of convergence is 1/2.
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9. (20 points) Find the radius and interval of convergence of the power series

∞∑
n=1

xn

n23n+2

Answer:

The ratio test will be applied

lim
n→∞

∣∣∣∣∣
xn+1

(n+1)23n+3

xn

n23n+2

∣∣∣∣∣ = lim
n→∞

∣∣∣∣ xn+1

(n+ 1)23n+3

n23n+2

xn

∣∣∣∣ = lim
n→∞

∣∣∣∣x3 n2

(n+ 1)2

∣∣∣∣
This simplifies to

|x|
3

lim
n→∞

n2

(n+ 1)2
=

|x|
3

The ratio test provides absolute convergence as long as this limit is strictly less than 1, and

divergence if the limit is strictly larger than 1. For convergence:

|x|
3

< 1 ⇐⇒ |x| < 3

Therefore the radius of convergence is 3. To get the interval, the edge cases |x| = 3 must be

checked. This corresponds to x = ±3. When x = −3 we check

∞∑
n=1

(−3)n

n23n+2
=

∞∑
n=1

(−1)n

n232
=

1

9

∞∑
n=1

(−1)n

n2

The series above is alternating, with 1
n2 decreasing, and limn→∞

1
n2 = 0. AST implies con-

vergence. Then, we check x = 3:

∞∑
n=1

(3)n

n23n+2
=

1

9

∞∑
n=1

1

n2

This converges by a p-test, (p = 2, 2 > 1). This gives us the interval of convergence:

I = [−3, 3].
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10. (20 points) For |x| < 1, set F (x) =

∫ x

0

ln(1 + t)

t
dt.

(a) (10 points.) Represent F (x) as a power series. [You do not need to find the radius

or interval of convergence.]

Answer:

Using the Macluarin series for ln(1 + x), we get

ln(1 + t)

t
=

1

t

(
∞∑
n=0

(−1)ntn+1

n+ 1

)

=
∞∑
n=0

(−1)ntn

n+ 1

and so

F (x) =

∫ x

0

ln(1 + t)

t
dt =

∞∑
n=0

(−1)n

n+ 1

∫ x

0

tn dt

=
∞∑
n=0

(−1)nxn+1

(n+ 1)(n+ 1)

=
∞∑
n=0

(−1)nxn+1

(n+ 1)2

= x− x2

22
+

x3

32
− x4

42
+ ...
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(b) (10 points.) Use your answer from part (a) to estimate the value of F (1/2) =

∫ 1/2

0

ln(1 + t)

t
dt

with an accuracy of 1/100. [Hint: use the error bound for alternating series.]

Answer:

From part (a), we can write F (1/2) as an alternating series:

F (1/2) =

∫ 1/2

0

ln(1 + t)

t
dt =

∞∑
n=0

(−1)n(1/2)n+1

(n+ 1)2

= 1/2− (1/2)2

22
+

(1/2)3

32
− (1/2)4

42
+ ...

=
1

2
− 1

4 · 4
+

1

8 · 9
− 1

16 · 16
+ ...

The alternating series estimation theorem then implies

∣∣∣∣F (1/2)−
(
1

2
− 1

16
+

1

72

)∣∣∣∣ ≤ 1

162
<

1

100

So that F (1/2) ≈ 1

2
− 1

16
+

1

72
with an error of at most 1/162 < 1/100.
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Scratch paper
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Scratch paper
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Scratch paper
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