Math 162: Calculus IIA

Final Exam ANSWERS December 3, 2024

Integration by parts formula:

$$\int u\,dv = uv - \int v\,du$$

Trigonometric identities:

$$\cos^{2}(x) + \sin^{2}(x) = 1 \qquad \sec^{2}(x) - \tan^{2}(x) = 1 \qquad \sin(2x) = 2\sin(x)\cos(x)$$
$$\cos^{2}(x) = \frac{1 + \cos(2x)}{2} \qquad \sin^{2}(x) = \frac{1 - \cos(2x)}{2}$$

Derivatives of trig functions.

$$\frac{d\sin x}{dx} = \cos x \qquad \qquad \frac{d\tan x}{dx} = \sec^2 x \qquad \qquad \frac{d\sec x}{dx} = \sec x \tan x$$
$$\frac{d\cos x}{dx} = -\sin x \qquad \qquad \frac{d\cot x}{dx} = -\csc^2 x \qquad \qquad \frac{d\csc x}{dx} = -\csc x \cot x$$

Trigonometric substitution tricks for odd powers of secant and even powers of tangent:

$$u = \sec(\theta) + \tan(\theta) \qquad \qquad \sec(\theta)d\theta = \frac{du}{u}$$
$$\sec(\theta) = \frac{u^2 + 1}{2u} \qquad \qquad \tan(\theta) = \frac{u^2 - 1}{2u}$$

Area of surface of revolution in rectangular coordinates y = f(x) with $0 \le a \le x \le b$:

• about the *x*-axis: $S = \int_{a}^{b} 2\pi |f(x)| \sqrt{1 + [f'(x)]^2} \, dx.$

• about the y-axis:
$$S = 2\pi \int_a^b x \sqrt{1 + [f'(x)]^2} \, dx.$$

Polar coordinate formulas.

$$x = r\cos(\theta) \qquad \qquad r^2 = x^2 + y^2$$

y/x

$$y = r\sin(\theta) \qquad \qquad \tan(\theta) =$$

Note: $\theta = \arctan(y/x)$ when x > 0, and $\theta = \arctan(y/x) + \pi$ when x < 0.

Changing θ by any multiple of 2π does not change the location of the point. Changing the sign of r is equivalent to adding π to θ , which is the same as moving the point to one in the opposite direction and the same distance from the origin.

Area in polar coordinates for $r = f(\theta)$, with $\alpha \leq \theta \leq \beta$:

$$A = \int_{\alpha}^{\beta} \frac{r^2}{2} \, d\theta.$$

Arc length formulas:

• Rectangular coordinates, y = f(x) with $a \le x \le b$:

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} \, dx.$$

• Polar coordinates, $r = f(\theta), \alpha \leq \theta \leq \beta$:

$$L = \int_{\alpha}^{\beta} \sqrt{[f(\theta)]^2 + [f'(\theta)]^2} \ d\theta$$

• Parametric equations, x = x(t), y = y(t) with $a \le t \le b$:

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt.$$

INFINITE SERIES FORMULAS

The Maclaurin series for f(x) is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n.$$

The Taylor series for f(x) at a is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n.$$

The nth Taylor polynomial is

$$T_n(x) = \sum_{i=0}^n \frac{f^{(i)}(a)}{i!} (x-a)^i,$$

and the nth Taylor remainder is

$$R_n(x) = f(x) - T_n(x).$$

Taylor's inequality says that if $|f^{(n+1)}(x)| \leq M$ for suitable x, then

$$|R_n(x)| \le \frac{|x-a|^{n+1}M}{(n+1)!}.$$

Part A

1. (20 points) Fix b > 0. Compute the arc length of the polar curve $r = e^{b\theta}$, where $0 \le \theta \le \pi$.

Answer:

Observe that $r' = be^{b\theta}$ and so

$$L = \int_0^{\pi} \sqrt{(r)^2 + (r')^2} \, d\theta$$

=
$$\int_0^{\pi} \sqrt{(e^{b\theta})^2 + b^2(e^{b\theta})^2} \, d\theta$$

=
$$\int_0^{\pi} \sqrt{(e^{b\theta})^2(1+b^2)} \, d\theta$$

=
$$\int_0^{\pi} e^{b\theta} \sqrt{1+b^2} \, d\theta$$

=
$$\sqrt{1+b^2} \, \int_0^{\pi} e^{b\theta} \, d\theta$$

=
$$\sqrt{1+b^2} \, \left[\frac{e^{b\theta}}{b}\right]_{\theta=0}^{\pi}$$

=
$$\sqrt{1+b^2} \, \frac{e^{b\pi}-1}{b}.$$

Final Exam

2. (20 points)

Consider the function $y = \sqrt{x+1}$ on the interval [1,5].

(a) (10 Points) Compute the volume of the region bound by the curves $y = \sqrt{x+1}$, x = 1, x = 5 and the x-axis, revolved about the x-axis.

Answer:

We can use the Disk (aka Washer) Method:

$$\int_{1}^{5} \pi (\sqrt{x+1})^{2} dx = \int_{1}^{5} \pi (x+1) dx$$
$$= \pi \left[\frac{x^{2}}{2} + x \right]_{1}^{5}$$
$$= 16\pi$$

(b) (10 Points) Compute the surface area of the region bound by the curves $y = \sqrt{x+1}$, x = 1, and x = 5, revolved about the x-axis.

Answer:

The derivative of $\sqrt{x+1}$ is $1/2\sqrt{x+1}$. So the formula for the surface area is:

$$\int_{1}^{5} 2\pi \sqrt{x+1} \cdot \sqrt{1 + \frac{1}{4(x+1)}} dx = 2\pi \int_{1}^{5} \sqrt{x+1 + \frac{1}{4}} dx$$
$$= 2\pi \left[\frac{2}{3}(x+\frac{5}{4})^{3/2}\right]_{1}^{5}$$
$$= \frac{4}{3}\pi \left(\frac{125}{8} - \frac{27}{8}\right)$$
$$= \frac{49\pi}{3}$$

3. (20 points) The ionization energy of an atom is the energy required to free an electron from the atom. For the hydrogen atom, this is given approximately by

$$\int_{R}^{\infty} \frac{1}{2} \frac{kq^2}{r^2} dr$$

Where R is the initial radius of the electron, k is a constant, and q is the magnitude of the charges of the electron and proton. Compute the above integral. Your answer should be in terms of R, k and q. Don't worry about units.

Answer:

$$\int_{R}^{\infty} \frac{1}{2} \frac{kq^2}{r^2} dr = \lim_{t \to \infty} \int_{R}^{t} \frac{1}{2} \frac{kq^2}{r^2} dr = \lim_{t \to \infty} \frac{kq^2}{2} \int_{R}^{t} \frac{1}{r^2} dr$$

This then simplifies to

$$\frac{kq^2}{2} \left(\lim_{t \to \infty} -\frac{1}{r} \Big|_R^t \right) = \frac{kq^2}{2} \left(\lim_{t \to \infty} \frac{1}{R} - \frac{1}{t} \right) = \frac{kq^2}{2R}$$

4. (20 points) Evaluate the following integrals.

(a) **(10 points.)**
$$\int x^2 \ln(x) \, dx$$

Answer:

Integrate by parts: Let $u = \ln(x)$, du = dx/x and $dv = x^2 dx$, $v = \frac{1}{3}x^3$. We get

$$\int x^2 \ln(x) dx = \int u dv$$
$$= uv - \int v du$$
$$= \frac{1}{3}x^3 \ln(x) - \int \frac{1}{3}x^3 \frac{dx}{x}$$
$$= \frac{1}{3}x^3 \ln(x) - \int \frac{1}{3}x^2 dx$$
$$= \frac{1}{3}x^3 \ln(x) - \frac{1}{9}x^3 + C.$$

(b) **(10 points)**
$$\int \frac{2x+1}{x^3+x} \, dx$$

Answer:

Factor the denominator as $x(x^2 + 1)$. The partial fraction decomposition takes the form

$$\frac{2x+1}{x(x^2+1)} = \frac{A}{x} + \frac{Bx+C}{x^2+1}$$

 So

$$2x + 1 = A(x^{2} + 1) + (Bx + C)x = (A + B)x^{2} + Cx + A.$$

Equating coefficients of like powers of x shows that A+B=0, C=2 and A=1 (so B=-1.) Therefore

$$\int \frac{2x+1}{x(x^2+1)} = \int \frac{1}{x} + \frac{-x+2}{x^2+1} dx$$
$$= \int \frac{1}{x} - \frac{x}{x^2+1} + \frac{2}{x^2+1} dx$$
$$= \ln|x| - \frac{1}{2}\ln|1 + x^2| + 2\arctan(x) + C.$$

Final Exam

5. (20 points) A curve C is defined by the parametric equation

$$x = x(t) = -\cos(t),$$
 $y = y(t) = \sin^3(t),$ $0 \le t \le 2\pi.$

Find the area of the region enclosed by this curve.

Answer:

We find the area A under the curve and above the x-axis from x = -1 to x = 0, and then multiply by 4 to find the total area enclosed by this curve. [Alternatively, we could find the area under the curve from x = -1 to x = 1 and multiply by 2.]

We have x = -1 when t = 0 and x = 0 when $t = \pi/2$. Also, $dx = \sin(t)dt$ and so

$$A = \int_{-1}^{0} y \, dx$$

= $\int_{0}^{\pi/2} \sin^{3}(t)(\sin(t)) \, dt$
= $\int_{0}^{\pi/2} \sin^{4}(t) \, dt$
= $\int_{0}^{\pi/2} \left(\frac{1 - \cos(2t)}{2}\right)^{2} \, dt$
= $\int_{0}^{\pi/2} \frac{1}{4} \left(1 - 2\cos(2t) + \cos^{2}(2t)\right) \, dt$
= $\frac{1}{4} \int_{0}^{\pi/2} 1 - 2\cos(2t) + \frac{1 + \cos(4t)}{2} \, dt$
= $\frac{1}{4} \int_{0}^{\pi/2} \frac{3}{2} - 2\cos(2t) + \cos(4t) \, dt$

Page 9 of 21

Thus the area enclosed by the region is $4A = 3\pi/4$.

Part B

6. (10 points) Find the sum of the series
$$\sum_{n=3}^{\infty} \frac{2^n - 7^{1-n}}{e^n}.$$

Answer:

Applying the geometric series formula gives

$$\sum_{n=3}^{\infty} 2^n / e^n = \sum_{n=3}^{\infty} (2/e)^n = \frac{(2/e)^3}{1 - (2/e)},$$

and

$$\sum_{n=3}^{\infty} 7^{1-n}/e^n = \sum_{n=3}^{\infty} 7/(7e)^n = 7\frac{(7e)^{-3}}{1-(7e)^{-1}}$$

so that

$$\sum_{n=3}^{\infty} \frac{2^n - 7^{1-n}}{e^n} = \sum_{n=3}^{\infty} \frac{2^n}{e^n} - \sum_{n=3}^{\infty} \frac{7^{1-n}}{e^n} = \frac{(2/e)^3}{1 - (2/e)} - 7\frac{(7e)^{-3}}{1 - (7e)^{-1}}.$$

7. (30 points) (10 points each.) For each of the following series, determine if the series is absolutely convergent, conditionally convergent, or divergent. Justify your answer with an appropriate convergence/divergence test.

(a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2}{n^3 + 1}$$

Answer:

Conditionally convergent.

Observe that $n^2/(n^3+1) \to 0$ as $n \to \infty$, and that if $f(x) = (x^2)/(x^3+1)$ then

$$f'(x) = \frac{(2x)(x^3 + 1) - (x^2)(3x^2)}{(x^3 + 1)^2}$$
$$= \frac{2x^4 + 2x - 3x^4}{(x^3 + 1)^2}$$
$$= \frac{-x^4 + 2x}{(x^3 + 1)^2}.$$

For x sufficiently large, we will have $x^4 > 2x$. $(x \ge 2$ suffices.) Therefore f'(x) < 0 for all large x and so f(n+1) < f(n) for all sufficiently large n. So the series satisfies the conditions of the alternating series test and is therefore convergent.

To see that $\sum (n^2)/(n^3+1)$ does not converge - and so the series is not absolutely convergent - apply the limit comparison test with the harmonic series $\sum 1/n$:

$$\lim_{n \to \infty} \frac{n^2}{n^3 + 1} / \frac{1}{n} = \lim_{n \to \infty} \frac{n^3}{(n^3 + 1)} = 1 > 0$$

so that $\sum n^2/(n^3 + 1)$ and $\sum 1/n$ either both converge or both diverge. Since $\sum 1/n$ is divergent, then so is $\sum n^2/(n^3 + 1)$. Alternatively, one can also use the integral test here.

Final Exam

(b)
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln(n))^2}$$

Answer:

Absolutely convergent. Use the integral test:

$$\int_{2}^{\infty} \frac{1}{x(\ln x)^{2}} dx = \int_{\ln 2}^{\infty} \frac{1}{u^{2}} du \quad \text{(via the substitution } u = \ln x.\text{)}$$
$$= \lim_{t \to \infty} \frac{-1}{u} \Big]_{\ln(2)}^{t}$$
$$= \lim_{t \to \infty} \frac{-1}{t} + \frac{1}{\ln(2)}$$
$$= 1/\ln(2).$$

So the integral test implies $\sum 1/(n(\ln n)^2$ converges. Since all of the terms in this series are positive then the series converges absolutely.

(c)
$$\sum_{n=1}^{\infty} (\cos(1/n) - 1)^n$$

Answer:

Absolutely convergent. Apply the root test:

$$\lim_{n \to \infty} |(\cos(1/n) - 1)^n|^{1/n} = \lim_{n \to \infty} |\cos(1/n) - 1| = \cos(0) - 1 = 0.$$

Since this limit is strictly less than 1, the series converges absolutely.

8. (20 points) Let

$$f(x) = \frac{x^2}{1+2x}.$$

(a) (10 points.) Find the Taylor series of f(x) centered at x = 0.

Answer:

Write

$$\begin{aligned} \frac{x^2}{1+2x} &= \frac{x^2}{1-(-2x)} \\ &= x^2 \sum_{n=0}^{\infty} (-2x)^n \qquad \text{(using geometric series expansion)} \\ &= \sum_{n=0}^{\infty} (-2)^n x^{n+2}. \end{aligned}$$

(b) (10 points.) Find the radius of convergence.

Answer:

One way is to note that f(x) is not defined at x = -1/2. This is a distance of 1/2 away from the center x = 0. Thus, the radius of convergence will be 1/2. Alternatively, you can use the Ratio Test:

$$\lim_{n \to \infty} \left| \frac{(-2)^{n+1} x^{n+3}}{(-2)^n x^{n+2}} \right| = |2x|$$

For the series to converge by the Ratio test, we must have |2x| < 1, which means |x| < 1/2. Thus, again, the radius of convergence is 1/2. 9. (20 points) Find the radius and interval of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{x^n}{n^2 3^{n+2}}$$

Answer:

The ratio test will be applied

$$\lim_{n \to \infty} \left| \frac{\frac{x^{n+1}}{(n+1)^2 3^{n+3}}}{\frac{x^n}{n^2 3^{n+2}}} \right| = \lim_{n \to \infty} \left| \frac{x^{n+1}}{(n+1)^2 3^{n+3}} \frac{n^2 3^{n+2}}{x^n} \right| = \lim_{n \to \infty} \left| \frac{x}{3} \frac{n^2}{(n+1)^2} \right|$$

This simplifies to

$$\frac{|x|}{3}\lim_{n \to \infty} \frac{n^2}{(n+1)^2} = \frac{|x|}{3}$$

The ratio test provides absolute convergence as long as this limit is strictly less than 1, and divergence if the limit is strictly larger than 1. For convergence:

$$\frac{|x|}{3} < 1 \iff |x| < 3$$

Therefore the radius of convergence is 3. To get the interval, the edge cases |x| = 3 must be checked. This corresponds to $x = \pm 3$. When x = -3 we check

$$\sum_{n=1}^{\infty} \frac{(-3)^n}{n^2 3^{n+2}} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 3^2} = \frac{1}{9} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$

The series above is alternating, with $\frac{1}{n^2}$ decreasing, and $\lim_{n\to\infty} \frac{1}{n^2} = 0$. AST implies convergence. Then, we check x = 3:

$$\sum_{n=1}^{\infty} \frac{(3)^n}{n^2 3^{n+2}} = \frac{1}{9} \sum_{n=1}^{\infty} \frac{1}{n^2}$$

This converges by a p-test, (p = 2, 2 > 1). This gives us the interval of convergence: I = [-3, 3].

10. (20 points) For
$$|x| < 1$$
, set $F(x) = \int_0^x \frac{\ln(1+t)}{t} dt$.

(a) (10 points.) Represent F(x) as a power series. [You do not need to find the radius or interval of convergence.]

Answer:

Using the Macluarin series for $\ln(1+x)$, we get

$$\begin{aligned} \frac{\ln(1+t)}{t} &= \frac{1}{t} \left(\sum_{n=0}^{\infty} \frac{(-1)^n t^{n+1}}{n+1} \right) \\ &= \sum_{n=0}^{\infty} \frac{(-1)^n t^n}{n+1} \end{aligned}$$

and so

$$F(x) = \int_0^x \frac{\ln(1+t)}{t} dt = \sum_{n=0}^\infty \frac{(-1)^n}{n+1} \int_0^x t^n dt$$
$$= \sum_{n=0}^\infty \frac{(-1)^n x^{n+1}}{(n+1)(n+1)}$$
$$= \sum_{n=0}^\infty \frac{(-1)^n x^{n+1}}{(n+1)^2}$$
$$= x - \frac{x^2}{2^2} + \frac{x^3}{3^2} - \frac{x^4}{4^2} + \dots$$

(b) (10 points.) Use your answer from part (a) to estimate the value of $F(1/2) = \int_0^{1/2} \frac{\ln(1+t)}{t} dt$ with an accuracy of 1/100. [Hint: use the error bound for alternating series.]

Answer:

From part (a), we can write F(1/2) as an alternating series:

$$F(1/2) = \int_0^{1/2} \frac{\ln(1+t)}{t} dt = \sum_{n=0}^\infty \frac{(-1)^n (1/2)^{n+1}}{(n+1)^2}$$
$$= 1/2 - \frac{(1/2)^2}{2^2} + \frac{(1/2)^3}{3^2} - \frac{(1/2)^4}{4^2} + \dots$$
$$= \frac{1}{2} - \frac{1}{4 \cdot 4} + \frac{1}{8 \cdot 9} - \frac{1}{16 \cdot 16} + \dots$$

The alternating series estimation theorem then implies

$$\left|F(1/2) - \left(\frac{1}{2} - \frac{1}{16} + \frac{1}{72}\right)\right| \le \frac{1}{16^2} < \frac{1}{100}$$

So that $F(1/2) \approx \frac{1}{2} - \frac{1}{16} + \frac{1}{72}$ with an error of at most $1/16^2 < 1/100$.

Scratch paper

Scratch paper

Scratch paper