
Math 162: Calculus IIA

Final Exam ANSWERS

December 19, 2022

Handy dandy formulas

Integration by parts formula: ∫
u dv = uv −

∫
v du

Trigonometric identities:

cos2 θ + sin2 θ = 1 sec2 θ − tan2 θ = 1

sin(α + β) = sinα cos β + cosα sin β cos(α + β) = cosα cos β − sinα sin β

cos2 θ =
1 + cos 2θ

2
sin2 θ =

1− cos 2θ

2

Derivatives of trig functions.

d sinx

dx
= cosx

d tanx

dx
= sec2 x

d secx

dx
= secx tanx

d cosx

dx
= − sinx

d cotx

dx
= − csc2 x

d cscx

dx
= − cscx cotx

Trigonometric substitution for integrals of the form∫
tanm x secn x dx with n > 0,

known in Doug’s section as the rabbit trick.

u = secx+ tanx secx dx =
du

u

secx =
u2 + 1

2u
tanx =

u2 − 1

2u

Area of surface of revolution in rectangular coordinates, y = f(x) with a ≤ x ≤ b

• about the x-axis: S = 2π

∫ b

a

f(x)
√
1 + f ′(x)2 dx

• about the y-axis: S = 2π

∫ b

a

x
√
1 + f ′(x)2 dx
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More formulas for your enjoyment

Polar coordinates

r =
√

x2 + y2 θ = arctan(y/x) for x > 0

π + arctan(y/x)for x < 0

π/2for x = 0 and y > 0

3π/2for x = 0 and y < 0

undefinedfor (x, y) = (0, 0)

x = r cos θ y = r sin θ

Changing θ by any multiple of 2π does not change the location of the point. Changing the

sign of r is equivalent to adding π to θ, which is the same as moving the point to one in the

opposite direction and the same distance from the origin.

Area in polar coordinates for r = f(θ) with α ≤ θ ≤ β:

A =

∫ β

α

r2

2
dθ

Arc length formulas

• Rectangular coordinates, y = f(x) with a ≤ x ≤ b:

S =

∫ b

a

√
1 + f ′(x)2 dx

• Polar coordinates, r = f(θ) with α ≤ θ ≤ β:

S =

∫ β

α

√
r2 + f ′(θ)2 dθ

• Parametric equations, x = x(t) and y = y(t) with a ≤ t ≤ b:

S =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt
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Infinite series formulas

The Maclaurin series for f(x) is
∞∑
n=0

f (n)(0)

n!
xn.

The Taylor series for f(x) at a is

∞∑
n=0

f (n)(a)

n!
(x− a)n.

The nth Taylor polynomial is

Tn(x) =
n∑

i=0

f (i)(a)

i!
(x− a)i,

and the nth Taylor remainder is

Rn(x) = f(x)− Tn(x).

Taylor’s inequality says that if |f (n+1)(x)| ≤ M for suitable x, then

|Rn(x)| ≤
|x− a|n+1M

(n+ 1)!
.
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Part A

1. (20 points)

(a) (10 points) The form of the partial fraction decomposition of the function is given below:

6x2 + x− 1

x3 + x
=

A

x
+

Bx+ C

x2 + 1
.

Find the coefficients A,B and C.

Answer:

6x2 + x− 1

x(x2 + 1)
=

A

x
+

Bx+ C

x2 + 1

6x2 + x− 1 = A(x2 + 1) + (Bx+ C)x = (A+B)x2 + Cx+ A.

Hence A+B = 6, C = 1 and A = −1, which implies A = −1, B = 7, C = 1 .

(b) (10 points) Evaluate the following integral:

∫
6x2 + x− 1

x3 + x
dx.

Answer:

From part (a):

∫
6x2 + x− 1

x3 + x
dx =

∫
−1

x
+

7x

x2 + 1
+

1

x2 + 1
dx∫

−1

x
dx = − ln |x|+ C.

For
∫ 7x

x2 + 1
dx we will use substitution u = x2 + 1:

∫
7x

x2 + 1
dx =

7

2

∫
1

u
du =

7

2
ln(u) + C =

7

2
ln |x2 + 1|+ C

and finally ∫
1

x2 + 1
dx = arctan(x) + C.
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So in total,

∫
6x2 + x− 1

x3 + x
dx = − ln |x|+ 7

2
ln |x2 + 1|+ arctan(x) + C.

2. (10 points) Compute the following integral:

∫
xe4x+2dx

Answer:

We will do integration by parts: u = x, dv = e4x+2dx,⇒ du = dx, v = 1
4
e4x+2.

∫
xe4x+2dx =

x

4
e4x+12 −

∫
1

4
e4x+2dx

=
x

4
e4x+2 − 1

16
e4x+2 + C.

3. (20 points) Find the arc-length of the parametric curve

x = 4 cos t+ cos 4t , y = 4 sin t− sin 4t , 0 ≤ t ≤ 2π

by doing it for 0 ≤ t ≤ 2π/5 and multiplying your answer by 5.

You may want to use the trig identities cos(α + β) = cosα cos β − sinα sin β and

sin2 θ = (1− cos 2θ)/2.

The curve for 0 ≤ t ≤ 2π is pictured below.

-4 -2 2 4

-4

-2

2

4
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Answer:

We have

dx/dt = −4(sin t+ sin 4t) and dy/dt = 4(cos t− cos 4t).

Therefore

(ds/dt)2 = (dx/dt)2 + (dy/dt)2

= 16(sin t+ sin 2t)2 + 16(cos t− cos 4t)2

= 16(sin2 t+ 2 sin t sin 4t+ sin2 4t+ cos2 t− 2 cos t cos 4t+ cos2 4t)

= 16(2− 2 cos 5t) = 32(1− cos 5t)

since cos(α + β) = cosα cos β − sinα sin β

= 64

(
1− cos 5t

2

)
= 64 sin2(5t/2),

so
ds

dt
= 8| sin(5t/2)|.

By the arc length formula, we have

L = 5

∫ 2π/5

0

ds = 40

∫ 2π/5

0

sin(5t/2) dt

= 16

∫ π

0

sinu du, where u = 5t/2, so dt = 2du/5

= −16 cosu
∣∣π
0
= 32.

4. (20 points)

(a) (10 points) Compute the volume of a region bounded by the curves y = x4 + 1, y = 1

and x = 1 and rotated around the y-axis.
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0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

Answer:

Using the shell method we have shells of radius x, thickness dx and height (x4+1)− 1 = x4.

Therefore

V =

∫ 1

0

2πx · x4dx = 2π
x6

6

∣∣∣∣1
0

=
π

3

(b) (10 points) Set up the integral for the volume of the region bounded by y = x3, y = 0 and

x = 2 and rotated around line x = 2. Use the shell method. Do not evaluate the integral.

0.0 0.5 1.0 1.5 2.0

0

2

4

6

8

Answer:

Using the shell method we have shells of radius (2 − x), thickness dx and height x3. Thus

the volume is

V =

∫ 2

0

2π(2− x)x3 dx.
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5. (15 points) Evaluate the integral∫
1

x2
√
x2 + 16

dx.

Answer:

Use the substitution x = 4 tan θ. Then dx = 4 sec2 θ dθ and

√
x2 + 16 =

√
16(tan2 θ + 1) =

√
16 sec2 θ = 4 sec θ.

So ∫
1

x2
√
x2 + 16

dx =

∫
1

16 tan2 θ 4 sec θ
4 sec2 θ dθ

=
1

16

∫
cos θ

sin2 θ
dθ =

1

16

[
− 1

sin θ

]
+ C = − 1

16 sin θ
+ C.

From tan θ = x
4
, by drawing a right triangle with one angle θ, we can check that

sin θ =
x√

x2 + 16
,

so the answer becomes

− 1

16

√
x2 + 16

x
+ C.

6. (15 points)

The cardioid is the curve defined in polar coordinates by r = 1+ cos θ. Find the area of the

region bounded above by the cardioid and below by the x-axis.
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Answer:

Solution: It is easily verified that the region R bounded above by the cardioid and below

by the x-axis is given by

R = {(r, θ) : 0 ≤ r ≤ 1 + cos θ, 0 ≤ θ ≤ π}.

We use the formula for area inside a polar curve to compute that the area A of the region R

is given by

A =
1

2

∫ π

0

(1 + cos θ)2 dθ =
1

2

∫ π

0

(1 + 2 cos θ + cos2 θ) dθ

=
1

2

∫ π

0

(
3

2
+ 2 cos θ +

1

2
cos 2θ

)
dθ =

1

2

[
3θ

2
+ 2 sin θ +

1

4
sin 2θ

]π
0

=
3π

4
.

Part B

7. (20 points) Let q be a positive (greater than 0) real number.

(a) (10 points)

Find the radius of convergence of the series
∞∑
n=0

(−1)n
(

q

q + 1

)n

(x− a)n.

Answer:

Applying the ratio test, we have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣∣
(−1)n

(
q

q+1

)n+1

(x− a)n+1

(−1)n
(

q
q+1

)n
(x− a)n

∣∣∣∣∣∣∣ = lim
n→∞

q

q + 1
|x− a| = q

q + 1
|x− a|

As q
q+1

|x − a| < 1 if and only if |x − a| < q+1
q
, we can conclude that the radius of

convergence is q+1
q
.

(b) (10 points)

Find the interval of convergence of the series
∞∑
n=0

(−1)n
(

q

q + 1

)n

(x− a)n.

Answer:
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To determine the interval of convergence, we plug in x = a ± q+1
q

into the original

expression. For x = a+ q+1
q
, the series becomes

∞∑
n=0

(−1)n
(

q

q + 1

)n(
q + 1

q

)n

=
∞∑
n=0

(−1)n,

which diverges. For x = a− q+1
q
, the series becomes

∞∑
n=0

(−1)n
(

q

q + 1

)n(
−q + 1

q

)n

=
∞∑
n=0

1,

which also diverges. Hence, the interval of convergence is(
a− q + 1

q
, a+

q + 1

q

)
.

8. (20 points)

Decide whether the following series are absolutely convergent, conditionally convergent, or

divergent. Give reasoning for your answers.

(a) (10 points)
∞∑
n=3

(−1)n

n ln(n)

Answer:

The series is not absolutely convergent:
∞∑
n=3

1

n ln(n)
diverges by integral test since

∫ ∞

3

1

x ln(x)
dx = lim

t→∞

∫ t

3

1

x ln(x)
dx = lim

t→∞
ln(ln(t))− ln(ln(3)) = ∞

But the series is convergent by the alternating series test since an = 1
n ln(n)

is positive on

n ≥ 3 and decreasing (the denominator gets larger, so the terms get smaller) and

lim
n→∞

1

n ln(n)
= 0.

Therefore the series
∞∑
n=0

(−1)n

n ln(n)
converges conditionally.
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(b) (10 points)
∞∑
n=1

(−1)n
(
1− 4n

1 + 3n

)2n

Answer:

We apply the root test.

lim
n→∞

n
√

|an| = lim
n→∞

n

√√√√∣∣∣∣∣(−1)n
(
1− 4n

1 + 3n

)2n
∣∣∣∣∣ = lim

n→∞
n

√(
4n− 1

1 + 3n

)2n

= lim
n→∞

(
4n− 1

1 + 3n

)2

=
16

9

> 1.

It follows from the ratio test that the series diverges.

9. (20 points)

(a) (10 points) Evaluate the following indefinite integral as an infinite series:∫
e−x2

dx

Answer:

Recall that

ex =
∞∑
n=0

xn

n!

for all x ∈ (−∞,∞). So,

e−x2

=
∞∑
n=0

(−x2)n

n!
=

∞∑
n=0

(−1)nx2n

n!
.

Using the interchangibility of the sum and the definite integral, we get

∫
e−x2

dx =

∫ ∞∑
n=0

(−1)nx2n

n!
dx =

∞∑
n=0

(−1)n

n!

∫
x2n dx

=

(
∞∑
n=0

(−1)n

n!

x2n+1

2n+ 1

)
+ C
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(b) (10 points) Use your answer from part (a) to approximate the value of the following

definite integral so that the error is less than 1/200:∫ 1

0

e−x2

dx

Express the relevant partial sum of the series as a fraction with whole numerator and

denominator. (Hint: use the error bound for alternating series.)

Answer:

Using the solution from part (a), we have

∫ 1

0

e−x2

dx =
∞∑
n=0

(−1)n

n!

x2n+1

2n+ 1

∣∣∣1
0
=

∞∑
n=0

(−1)n

(2n+ 1)n!
.

This series converges by alternating series test with an = 1
(2n+1)n!

. We can use the

alternating series error estimate to approximate
∫ 1

0
e−x2

dx as SN , the N -th partial sum,

with an error bounded by aN+1. So it is enough to find the smallest possible N where

aN+1 < 1/200. This requires to find N such that

1

(2N + 3)(N + 1)!
<

1

200

which is equivalent to finding N such that

(2N + 3)(N + 1)! > 200.

Listing some values we see

a0 = 1 a1 = −1

3
a2 =

1

10
a3 = − 1

42
a4 =

1

216

Hence N = 3 will do and we get

S3 = a0 − a1 + a2 − a3 = 1− 1

3
+

1

10
− 1

42

=
210− 70 + 21− 5

210
=

156

210

and ∫ 1

0

e−x3

dx ≈ S3 = 1− 1

3
+

1

10
− 1

42
=

156

210
≈ 0.743

with an error smaller than 1
200

= 0.005.
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10. (20 points)

Calculate the Taylor series for the following functions using any technique that you choose.

Show your work. You should have a single sum in your answers. You do not need to specify

the radius/interval of convergence.

(a) (10 points) f(x) =
1

1− 2x
− 1

1 + 2x
centered at x = 0 (a = 0).

Answer:

We start by simplifying the expression for f(x) by taking a common denominator.

f(x) =
1

1− 2x
− 1

1 + 2x
=

4x

1− 4x2

Recalling that

1

1− x
=

∞∑
n=0

xn,

we can write

f(x) =
4x

1− 4x2
= 4x

∞∑
n=0

4nx2n =
∞∑
n=0

4n+1x2n+1.

(b) (10 points) f(x) = e−2x centered at x = 2 (a = 2) .

Answer:

Taking derivatives, we see that

f (1)(x) = −2e−2x f (2)(x) = 4e−2x f (3)(x) = −8e−2x · · ·
f (n)(x) = (−2)ne−2x.

It follows that f (n)(2) = (−2)ne−4 and, using the Taylor series formula,

f(x) =
∞∑
n=0

(−2)ne−4

n!
(x− 2)n
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This is scratch paper. If you use it to work on a problem, please indicate so on the page

where that problem occurs.
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Second scratch paper page. If you use it to work on a problem, please indicate so on the

page where that problem occurs.
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Third scratch paper page. If you use it to work on a problem, please indicate so on the

page where that problem occurs.
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Fourth scratch paper page. If you use it to work on a problem, please indicate so on the

page where that problem occurs.
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