
Math 162: Calculus IIA

Final Exam ANSWERS

December 16, 2021

Handy dandy formulas

Integration by parts formula: ∫
u dv = uv −

∫
v du

Trigonometric identities:

cos2 θ + sin2 θ = 1 sec2 θ − tan2 θ = 1

sin(α + β) = sinα cos β + cosα sin β cos(α + β) = cosα cos β − sinα sin β

cos2 θ =
1 + cos 2θ

2
sin2 θ =

1− cos 2θ

2

Derivatives of trig functions.

d sinx

dx
= cosx

d tanx

dx
= sec2 x

d secx

dx
= secx tanx

d cosx

dx
= − sinx

d cotx

dx
= − csc2 x

d cscx

dx
= − cscx cotx

Trigonometric substitution for integrals of the form∫
tanm x secn x dx with n > 0,

known in Doug’s section as the rabbit trick.

u = secx+ tanx secx dx =
du

u

secx =
u2 + 1

2u
tanx =

u2 − 1

2u

Area of surface of revolution in rectangular coordinates, y = f(x) with a ≤ x ≤ b

• about the x-axis: S = 2π

∫ b

a

f(x)
√
1 + f ′(x)2 dx

• about the y-axis: S = 2π

∫ b

a

x
√
1 + f ′(x)2 dx
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More formulas for your enjoyment

Polar coordinates

r =
√

x2 + y2 θ = arctan(y/x) for x > 0

π + arctan(y/x)for x < 0

π/2for x = 0 and y > 0

3π/2for x = 0 and y < 0

undefinedfor (x, y) = (0, 0)

x = r cos θ y = r sin θ

Changing θ by any multiple of 2π does not change the location of the point. Changing the

sign of r is equivalent to adding π to θ, which is the same as moving the point to one in the

opposite direction and the same distance from the origin.

Area in polar coordinates for r = f(θ) with α ≤ θ ≤ β:

A =

∫ β

α

r2

2
dθ

Arc length formulas

• Rectangular coordinates, y = f(x) with a ≤ x ≤ b:

S =

∫ b

a

√
1 + f ′(x)2 dx

• Polar coordinates, r = f(θ) with α ≤ θ ≤ β:

S =

∫ β

α

√
r2 + f ′(θ)2 dθ

• Parametric equations, x = x(t) and y = y(t) with a ≤ t ≤ b:

S =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt
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Infinite series formulas

The Maclaurin series for f(x) is
∞∑
n=0

f (n)(0)

n!
xn.

The Taylor series for f(x) at a is

∞∑
n=0

f (n)(a)

n!
(x− a)n.

The mth Taylor polynomial is

Tm(x) =
m∑

n=0

f (n)(a)

n!
(x− a)n,

and the mth Taylor remainder is

Rm(x) = f(x)− Tm(x)

Taylor’s inequality says that if |f (n+1)(x)| ≤ M for suitable x, then

|Rm(x)| ≤
(x− a)n+1M

(n+ 1)!
.
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Part A

1. (20 points)

(a) (10 points) The form of the partial fraction decomposition of the function is given below:

3x2 + 3x+ 3

(x− 3)(x2 + 4)
=

A

x− 3
+

Bx+ C

x2 + 4
.

Find the coefficients A,B and C.

Answer:

3x2 + 3x+ 3

(x− 3)(x2 + 4)
=

A

x− 3
+

Bx+ C

x2 + 4

3x2 + 3x+ 3 = A(x2 + 4) + (Bx+ C)(x− 3).

Plug in x = 3 :

27 + 9 + 3 = 39 = 13A,⇒ A = 3.

Therefore, 3x2+3x+3 = 3(x2+4)+(Bx+C)(x−3) = (3+B)x2+(C−3B)x+12−3C.

Matching coefficients of appropriate degrees of x, we get 3 = 3 +B and 3 = 12− 3C.

So B = 0 and C = 3.

(b) (10 points) Evaluate the following integral:

∫
3x2 + 3x+ 3

(x− 3)(x2 + 4)
dx.

Answer:

From part (a):

∫
3x2 + 3x+ 3

(x− 3)(x2 + 4)
dx

=

∫
3

x− 3
+

3

x2 + 4
dx.
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x− 3
dx = 3 ln |x− 3|+ C.

For
∫ 3

x2 + 4
dx we will use trig substitution:

tan(θ) = x/2 ⇒ 2 tan(θ) = x ⇒ 2 sec2(θ)dθ = dx. Also, cos(θ) =
1√

x2 + 4
, so cos2(θ) =

1

x2 + 4
. After substituting,

∫ 3

x2 + 4
dx = 3

∫
cos2(θ) sec2(θ)dθ = 3

∫
dθ = 3θ + C = 3arctan(x/2) + C.

So in total,

∫
3

x− 3
+

3

x2 + 4
dx = 3 ln |x− 3|+ 3arctan(x/2) + C.

2. (20 points) Consider the solid R formed by revolving the function y =
√
4− x2

around the x-axis for 0 ≤ x ≤ 2.

(a) (10 points) Compute the volume of R.

Answer:

Using the Disk Method, the volume is

π

2∫
0

4− x2dx

=π

[
4x− x3

3

]2
0

=
16π

3

(b) (10 points) Compute the surface area of R.

Answer:

The formula for the surface area is

Page 5 of 17



December 12, 2021 Final Exam Math 162 (Calculus IIA)

S = 2π

2∫
0

y
√
1 + (y′)2dx

= 2π

2∫
0

√
4− x2

√
1 +

(
−x√
4− x2

)2

dx

= 2π

2∫
0

√
4− x2

√
1 +

x2

4− x2
dx

= 2π

2∫
0

√
4− x2

√
4− x2

4− x2
+

x2

4− x2
dx

= 2π

2∫
0

√
4− x2

√
4

4− x2
dx

= 2π

2∫
0

2dx = 2π [2x]20 = 8π.

3. (10 points) Compute the following integral:

∫
x ln(x)dx

Answer:

We will do integration by parts: u = ln(x), dv = xdx,⇒ du = 1/xdx, v = x2/2.

∫
x ln(x)dx =

x2 ln(x)

2
−
∫

x

2
dx

=
x2 ln(x)

2
− x2

4
+ C.

4. (20 points)

Find the arc length L of the polar curve, r = eθ/4, from θ = 0 to θ = 4π.
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Answer:

For future reference note that dr/dθ = eθ/4/4. The polar arc length formula gives

s =

∫ 4π

0

√
r2 + (dr/dθ)2 dθ

=

∫ 4π

0

√
eθ/2 + eθ/2/16 dθ

=

√
17

16

∫ 4π

0

eθ/4 dθ =

√
17

4
4eθ/4

∣∣4π
0

=
√
17(eπ − 1).

5. (20 points)

(a) (10 points) Compute the volume of a region bounded by the curves y = x5+1, y = 1

and x = 1 and rotated around the y-axis.

Answer:

Using the shell method we have shells of radius x, thickness dx and height (x5+1)−1 =

x5. Therefore

V =

∫ 1

0

2πx · x5dx = 2π
x7

7

∣∣∣∣1
0

=
2π

7

(b) (10 points) Find the volume of the region bounded by y = x3, y = 0 and x = 1 and

rotated around line x = 2. Use the shell method.

Answer:
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Using the shell method we have shells of radius (2−x), thickness dx and height x3. Thus

the volume is

V =

∫ 1

0

2π(2− x)x3 dx

= π

∫ 1

0

4x3 − 2x4 dx

= π

(
x4 − 2x5

5

)∣∣∣∣1
0

= π

(
1− 2

5

)
=

3π

5

6. (20 points) Compute ∫
x2

(1− 4x2)3/2
dx

Answer:

Consider the right triangle with hypotenuse 1 and sides 2x and
√
1− 4x2. Let θ be the

angle opposite 2x. Then we have

x =
sin θ

2
dx =

cos θ dθ

2

√
1− 4x2 = cos θ.

Writing the integral in term of θ,∫
x2

(1− 4x2)3/2
dx =

∫ (
sin2 θ/4

)
cos3 θ

cos θ dθ

2

=
1

8

∫
sin2 θ dθ

cos2 θ

=
1

8

∫
tan2 θ dθ

=
1

8

∫ (
sec2 θ − 1

)
dθ

=
1

8
(tan θ − θ) + c

=
1

8

(
2x√

1− 4x2
− arcsin 2x

)
+ c

7. (20 points)
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(a) (10 points) Find the area of the region both inside the circle r = sin θ and outside

the circle r = cos θ (both equations are in polar coordinates). The two circles are shown

below. They intersect at the origin and the polar point (θ, r) = (π/4,
√
2/2).

-0.4 -0.2 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

Answer:

Find the area of the region inside the first circle and outside the second by integrating∫ π

π/4

r2

2
dθ =

1

2

∫ π

π/4

sin2 θ dθ =
1

4

∫ π

π/4

(
1− cos 2θ

)
dθ

=
1

4

(
3π

4
− sin 2π

2
+

sin(π/2)

2

)
=

1

4

(
3π

4
+

1

2

)
=

3π

16
+

1

8

and subtracting∫ π/2

π/4

r2

2
dθ =

1

2

∫ π/2

π/4

cos2 θ dθ =
1

4

∫ π/2

π/4

(
1 + cos 2θ

)
dθ

=
1

4

(
π

4
+

sin π

2
− sin(π/2)

2

)
=

1

4

(
π

4
− 1

2

)
=

π

16
− 1

8
.

So the area of the region is(
3π

16
+

1

8

)
−
(

π

16
− 1

8

)
=

π

8
+

1

4
.

(b) (10 points) Compute the equation (in Cartesian coordinates x, y) of the tangent line

to the circle r = sin θ at the points where it intersects the circle r = cos θ

Answer:
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There are two intersection points, at (x, y) = (0, 0) and (x, y) = (
√
2/2,

√
2/2), at which

the tangent lines to the upper circle are horizontal with equation y = 0 and vertical with

equation x =
√
2/2 respectively.

Part B

8. (20 points) Let q be a positive (greater than 0) real number.

(a)(10 points)

Find the radius of convergence of the series
∞∑
n=0

q2n(x− π)n.

Answer:

Applying the ratio test, we have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣q2(n+1)(x− π)n+1

q2n(x− π)n

∣∣∣∣ = lim
n→∞

q2|x− π| = q2|x− π|

As q2|x − π| < 1 if and only if |x − π| < 1/q2, we can conclude that the radius of

convergence is 1/q2.

(b)(10 points) Find the interval of convergence of the series
∞∑
n=0

q2n(x− π)n.

Answer:

To determine the interval of convergence, we plug in x = π ± 1/q2 into the original

expression. For x = π + 1/q2, the series becomes
∑∞

n=0 q
2n(1/q2)n =

∑∞
n=0 1, which

diverges; for x = π − 1/q2, the series becomes
∑∞

n=0 q
2n(−1/q2)n =

∑∞
n=0(−1)n, which

also diverges. Hence, the interval of convergence is (π − 1/q2, π + 1/q2).

9. (20 points)

(a)(10 points) Consider the series
∞∑
n=1

(−1)n
√

1

n2
+ 1. Is this series conditionally con-

vergent, absolutely convergent, or divergent? Explain your answer.

Answer:

The series is divergent, since lim
n→∞

(−1)n
√

1

n2
+ 1 does not exist.

(b)(10 points) The series
∞∑
n=1

(−2)n

n
converges conditionally. How many terms do you

need to estimate the sum with an accuracy of 1/1000?

[The series actually diverges. IGNORE THIS PROBLEM.]
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Answer:

10. (20 points)

(a)(10 points) Find a power series expansion of f(x) =
1

x
centered at x = 1.

Answer:

Since
1

x
=

1

1 + (x− 1)
=

1

1− (−(x− 1))
, we can use the geometric series expansion

to get
1

x
=

∞∑
n=0

(−1)n(x− 1)n.

(b)(10 points) Use your series from (a) to find a power series expansion of
1

x2
centered

at x = 1.

Answer:

As
1

x2
= − d

dx

(
1

x

)
, we can differentiate our series from (a) to get

1

x2
= −

∞∑
n=1

n(−1)n(x− 1)n−1 =
∞∑
n=1

n(−1)n−1(x− 1)n−1.

11. (20 points)

(a) (10 points) Show that the following series converges:

∞∑
n=1

1

n · 5n

Answer:

For all n ≥ 1, 1
n·5n ≤ 1

5n
.

∞∑
n=1

1
5n

converges because it is a geometric series. Therefore, by

the Comparison Test,
∞∑
n=1

1
n·5n also converges.

One could also use the ratio test, for which the relevant limit is

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

1/(n+ 1)5n+1

1/n · 5n

= lim
n→∞

n

5(n+ 1)
=

1

5
lim
n→∞

n

n+ 1
=

1

5

Since |L| < 1. the series converges.
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(b) (5 Points) Find the Maclaurin power series representation for − ln |1 − x|. (Hint:
What is the Maclaurin series for 1/(1− x)?)

Answer:

1
1−x

=
∞∑
n=0

xn. Taking the antiderivative of both sides, we get

− ln |1− x| =
∞∑
n=1

xn

n
.

(c) (5 Points) Find the value of the sereis of (a) in terms of the natural logarithm.

Answer:

Plug in 1
5
for x in the Maclaurin series for − ln |1− x| to get

∞∑
n=1

1

n · 5n
= − ln(4/5) = ln(5/4).

This is scratch paper. If you use it to work on a problem, please indicate so on the

page where that problem occurs.
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Second scratch paper page. If you use it to work on a problem, please indicate so on

the page where that problem occurs.
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Third scratch paper page. If you use it to work on a problem, please indicate so on the

page where that problem occurs.
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Fourth scratch paper page. If you use it to work on a problem, please indicate so on

the page where that problem occurs.
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More scratch paper. If you use it to work on a problem, please indicate so on the page

where that problem occurs.
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And even more scratch paper. If you use it to work on a problem, please indicate so on

the page where that problem occurs.
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