Math 162 final exam December 12, 2021

Handy dandy formulas Integration by parts formula:

$$
\int u\,dv = uv - \int v\,du
$$

Trigonometric identities:

$$
\cos^{2} \theta + \sin^{2} \theta = 1
$$

\n
$$
\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta
$$

\n
$$
\cos^{2} \theta = \frac{1 + \cos 2\theta}{2}
$$

\n
$$
\sin^{2} \theta = \frac{1 - \cos 2\theta}{2}
$$

\n
$$
\sin^{2} \theta = \frac{1 - \cos 2\theta}{2}
$$

Derivatives of trig functions.

$$
\frac{d \sin x}{dx} = \cos x \qquad \frac{d \tan x}{dx} = \sec^2 x \qquad \frac{d \sec x}{dx} = \sec x \tan x
$$

$$
\frac{d \cos x}{dx} = -\sin x \qquad \frac{d \cot x}{dx} = -\csc^2 x \qquad \frac{d \csc x}{dx} = -\csc x \cot x
$$

Trigonometric substitution for integrals of the form

$$
\int \tan^m x \sec^n x \, dx \qquad \text{with } n > 0,
$$

known in Doug's section as the rabbit trick.

$$
u = \sec x + \tan x \qquad \sec x \, dx = \frac{du}{u}
$$

$$
\sec x = \frac{u^2 + 1}{2u} \qquad \tan x = \frac{u^2 - 1}{2u}
$$

Area of surface of revolution in rectangular coordinates, $y = f(x)$ with $a \leq$ $x\leq b$

- about the *x*-axis: $S = 2\pi$ \int^b a $f(x)\sqrt{1+f'(x)^2} dx$
- about the *y*-axis: $S = 2\pi$ \int^b a $x\sqrt{1+f'(x)^2} dx$

More formulas for your enjoyment Polar coordinates

 $r = \sqrt{x^2 + y^2}$ $\theta = \arctan(y/x)$ for $x > 0$ $\pi + \arctan(y/x)$ for $x < 0$ $\pi/2$ for $x = 0$ and $y > 0$ $3\pi/2$ for $x = 0$ and $y < 0$ undefined for $(x, y) = (0, 0)$ $x = r \cos \theta$ $y = r \sin \theta$

Changing θ by any multiple of 2π does not change the location of the point. Changing the sign of r is equivalent to adding π to θ , which is the same as moving the point to one in the opposite direction and the same distance from the origin.

Area in polar coordinates for $r = f(\theta)$ with $\alpha \leq \theta \leq \beta$:

$$
A = \int_{\alpha}^{\beta} \frac{r^2}{2} \, d\theta
$$

Arc length formulas

• Rectangular coordinates, $y = f(x)$ with $a \le x \le b$:

$$
S = \int_{a}^{b} \sqrt{1 + f'(x)^2} \, dx
$$

• Polar coordinates, $r = f(\theta)$ with $\alpha \leq \theta \leq \beta$:

$$
S = \int_{\alpha}^{\beta} \sqrt{r^2 + f'(\theta)^2} \, d\theta
$$

• Parametric equations, $x = x(t)$ and $y = y(t)$ with $a \le t \le b$:

$$
S = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt
$$

Infinite series formulas The Maclaurin series for $f(x)$ is

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n.
$$

The Taylor series for $f(x)$ at a is

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n.
$$

The mth Taylor polynomial is

$$
T_m(x) = \sum_{n=0}^{m} \frac{f^{(n)}(a)}{n!} (x - a)^n,
$$

and the mth Taylor remainder is

$$
R_m(x) = f(x) - T_m(x)
$$

Taylor's inequality says that if $|f^{(n+1)}(x)| \leq M$ for suitable x, then

$$
|R_m(x)| \le \frac{(x-a)^{n+1}M}{(n+1)!}.
$$