Math 162: Calculus IIA

Final Exam, Sunday Edition ANSWERS December 17, 2020

Trig formulas:

- $\cos^2(x) + \sin^2(x) = 1$
- $sec^2(x) tan^2(x) = 1$
- $\sin(2x) = 2\sin(x)\cos(x)$
- $\cos^2(x) = \frac{1 + \cos(2x)}{2}$ 2 • $\sin^2(x) = \frac{1 - \cos(2x)}{2}$ 2

Trigonometric substitution tricks for odd powers of secant and even powers of tangent:

•
$$
u = \sec(\theta) + \tan(\theta)
$$

• $\sec(\theta)d\theta = \frac{du}{dt}$ \overline{u} • $\sec(\theta) = \frac{u^2+1}{2}$ $2u$ • $\tan(\theta) = \frac{u^2-1}{2}$ $2u$

Integration by parts:

$$
\int u\,dv = uv - \int v\,du
$$

Polar coordinate formulas:

• Area:

$$
\frac{1}{2}\int r^2 d\theta
$$

• Arc length:

$$
\int \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta
$$

Parametric equation formulas:

- Newton's notation: x˙ = dx/dt y˙ = dy/dt
- Slope of tangent line: $dy/dx = \dot{y}/\dot{x}$.
- Second derivative

$$
\frac{d^2y}{dx^2} = \frac{d(\dot{y}/\dot{x})/dt}{\dot{x}}.
$$

Curve is concave up/down when this is positive/negative.

• Arc length:

$$
\int \sqrt{\dot{x}^2 + \dot{y}^2} dt.
$$

Power series formulas:

• MACLAURIN series for $f(x)$:

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)x^n}{n!}.
$$

• Maclaurin series for specific functions:

$$
e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

\n
$$
\cos x = \sum_{m=0}^{\infty} \frac{(-1)^{m} x^{2m}}{(2m)!}
$$

\n
$$
\sin x = \sum_{m=0}^{\infty} \frac{(-1)^{m} x^{2m+1}}{(2m+1)!}
$$

\n
$$
\arctan x = \sum_{m=0}^{\infty} \frac{(-1)^{m} x^{2m+1}}{2m+1}
$$

\n
$$
\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{n}
$$

\n
$$
(1+x)^{k} = \sum_{n=0}^{\infty} {k \choose n} x^{n}
$$

\nwhere ${k \choose n} = \frac{k(k-1) \cdots (k-n+1)}{n!}$

• TAYLOR series for $f(x)$ about a:

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)(x-a)^n}{n!}.
$$

• The nth partial sum of the above, also called the nth Taylor polynomial, is

$$
T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)(x-a)^k}{k!},
$$

and the *n*th Taylor remainder is $R_n(x) = f(x) - T_n(x)$. Taylor's inequality says that

$$
|R_n(x)| \le \frac{M|x - a|^{n+1}}{(n+1)!},
$$

when x is in an interval centered at a in which $|f^{(n+1)}| \leq M$.

- **1. (25 points)** Consider the region R under $y = \sin(x)$, for x in $[0, \pi]$.
- (a) Compute the volume of the solid formed by revolving R about the x-axis. **Solution:** We will use the disk method:

$$
\int_{0}^{\pi} \pi \sin^2(x) dx
$$

$$
= \int_{0}^{\pi} \pi \frac{1 - \cos(2x)}{2} dx
$$

$$
= \frac{\pi}{2} \left[x - \frac{1}{2} \sin(2x) \right]_{0}^{\pi}
$$

$$
= \frac{\pi^2}{2}.
$$

(b) Compute the volume of the solid formed by revolving $\mathcal R$ about the y-axis. **Solution:** We will use the shell method:

$$
\int_{0}^{\pi} 2\pi x \sin(x) dx
$$

To integrate this, we'll use integration by parts: $u = x, dv = \sin(x)dx$. This makes $du = dx, v = -\cos(x)$. The integral equals

$$
2\pi \left[\left[-x \cos(x) \right]_0^{\pi} + \int_0^{\pi} \cos(x) dx \right]
$$

$$
= 2\pi \left[\left[-x \cos(x) \right]_0^{\pi} + \left[\sin(x) \right]_0^{\pi} \right]
$$

$$
= 2\pi \left[\pi + 0 \right]
$$

$$
= 2\pi^2.
$$

2. (25 points)

Compute the following integral:

$$
\int \frac{x}{(x-1)^2(x+1)} dx
$$

Answer:

Split the integrand using partial fractions:

$$
\frac{x}{(x-1)^2(x+1)} = \frac{a}{x-1} + \frac{b}{(x-1)^2} + \frac{c}{x+1}
$$

$$
\Leftrightarrow x = a(x-1)(x+1) + b(x+1) + c(x-1)^2
$$

Using the Heaviside Method: First let $x = 1$:

$$
1=2b\Rightarrow b=\frac{1}{2}
$$

Second let $x = -1$.

$$
-1 = c(-2)^2 \Rightarrow c = -\frac{1}{4}
$$

To solve for a , we need to match coefficients of x :

$$
0x^{2} + 1x + 0 = ax^{2} - a + \frac{1}{2}x + \frac{1}{2} - \frac{1}{4}x^{2} + \frac{1}{2}x - \frac{1}{4}
$$

Matching the x^2 coefficients, we get that $0x^2 = ax^2 - \frac{1}{4}$ 4 x^2 , so $a=\frac{1}{4}$ 4 . Putting this together,

$$
\int \frac{x}{(x-1)^2(x+1)} dx = \int \frac{1}{4(x-1)} + \frac{1}{2(x-1)^2} - \frac{1}{4(x+1)} dx
$$

$$
= \frac{1}{4} \ln|x-1| + \frac{-1}{2(x-1)} - \frac{1}{4} \ln|x+1| + C.
$$

3. (25 points) Find the arc-length of the parametric curve

 $x=4\cos t+\cos 4t\,,\ y=4\sin t-\sin 4t\,,\ 0\leq t\leq 2\pi\,.$

by doing it for $0 \le t \le 2\pi/5$ and multiplying your answer by 5.

YOU MAY WANT TO USE THE TRIG IDENTITIES $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$ and $\sin^2 \theta = (1 - \cos 2\theta)/2.$

The curve for $0\leq t\leq 2\pi$ is pictured below.

Answer:

We have

$$
dx/dt = -4(\sin t + \sin 4t)
$$
 and $dy/dt = 4(\cos t - \cos 4t)$.

Therefore

$$
(ds/dt)^2 = (dx/dt)^2 + (dy/dt)^2
$$

= 16(sin t + sin 2t)² + 16(cos t - cos 4t)²
= 16(sin² t + 2 sin t sin 4t + sin² 4t + cos² t - 2 cos t cos 4t + cos² 4t)
= 16(2 - 2 cos 5t) = 32(1 - cos 5t)
since cos(α + β) = cos α cos β - sin α sin β
= 64 $\left(\frac{1 - cos 5t}{2}\right)$
= 64 sin²(5t/2),

so

$$
\frac{ds}{dt} = 8|\sin(5t/2)|.
$$

By the arc length formula, we have

$$
L = 5 \int_0^{2\pi/5} ds = 40 \int_0^{2\pi/5} \sin(5t/2) dt
$$

=
$$
16 \int_0^{\pi} \sin u \, du
$$
, where $u = 5t/2$, so $dt = 2du/5$
= $-16 \cos u \Big|_0^{\pi} = 32$.

4. (25 points)

Let $f : (0, \infty) \to \mathbb{R}$ be a positive, increasing function that is bounded above by a constant M, i.e.

$$
f(x) < M
$$
 for all x .

Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

$$
\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n} + f(n)}
$$

Answer:

First we check absolute convergence. Let $a_n = \frac{1}{\sqrt{n+1}}$ $\frac{1}{n+f(n)}$. We use the limit comparison test with the series $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ $\frac{1}{n}$:

$$
\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{n} + f(n)} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}}
$$

$$
= \lim_{n \to \infty} \frac{1}{1 + \frac{f(n)}{\sqrt{n}}}
$$

As $0 < f(n) < M$ for all $n > 0$, we have $\lim_{n\to\infty} \frac{f(n)}{\sqrt{n}} = 0$, so the above limit is 1. Since $\sum_{n=1}^{\infty} b_n$ diverges (*p*-series with $0 < p < 1$), the limit comparison implies that $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}$ $\overline{n}+f(n)$ diverges as well.

Next we check convergence. Since $f(x)$ is a positive function, we have $0 < \frac{1}{\sqrt{n}+f(n)} < \frac{1}{\sqrt{n}}$ $\frac{1}{n}$ then it is clear that $\lim_{n\to\infty} \frac{1}{\sqrt{n}+f(n)} = 0$. Moreover, since $f(n)$ and \sqrt{n} are both increasing, $\frac{1}{\sqrt{2}}$ $\frac{1}{n+f(n)}$ is decreasing. By the alternating series test, the series $\sum_{n=1}^{\infty}$ $\frac{(-1)^n}{\sqrt{n}+f(n)}$ is convergent. Combine with above, the series is conditionally convergent.

5. (25 points) Let $k \geq 2$ be an integer. Determine whether the series is absolutely convergent, conditonally convergent, or divergent.

$$
\sum_{n=2}^{\infty} (-1)^n \frac{1}{n(\ln n)^k}.
$$

Page 6 of 10

Answer:

First we test absolute convergence, so we consider the series $\sum_{n=1}^{\infty}$ 1 $\frac{1}{n(\ln n)^k}$. We compute the improper integral

$$
\int_{2}^{\infty} \frac{1}{x(\ln x)^{k}} dx = \lim_{t \to \infty} \int_{2}^{t} \frac{1}{x(\ln x)^{k}} dx
$$

\n
$$
= \lim_{t \to \infty} \int_{\ln 2}^{\ln t} \frac{du}{u^{k}} \quad \text{where } u = \ln x
$$

\n
$$
= \lim_{t \to \infty} \frac{1}{-k+1} [u^{-k+1}]_{\ln 2}^{\ln t}
$$

\n
$$
= \lim_{t \to \infty} \frac{1}{-k+1} \left(\frac{1}{(\ln t)^{k-1}} - \frac{1}{(\ln 2)^{k-1}} \right)
$$

\n
$$
= \frac{1}{(k-1)(\ln 2)^{k-1}} \quad \text{since } k \ge 2
$$

Since the improper integral is finite, by the integral test the series is convergent, and that our original series $\sum_{n=2}^{\infty}(-1)^n \frac{1}{n(\ln n)^k}$ is absolutely convergent.

6. (25 points)

(a) (15 points) Find the area inside the polar curve $r = 2\cos(\theta)$ and outside the polar curve $r = \sqrt{3}$, as shown below.

Answer:

The curves intersect when $2\cos(\theta) = \sqrt{3}$ or $\cos(\theta) =$ $\sqrt{3}$ $\frac{\sqrt{3}}{2}$. We know cos⁻¹(√ 3 $\frac{\sqrt{3}}{2}$) = $\frac{\pi}{6}$ so the points of intersection are $\theta_1 = -\frac{\pi}{6}$ $\frac{\pi}{6}$ and $\theta_2 = \frac{\pi}{3}$ $\frac{\pi}{3}$. Thus,

$$
A = \int_{-\pi/6}^{\pi/6} \frac{1}{2} [(2 \cos \theta)^2 - (\sqrt{3})^2] d\theta = 2 \int_0^{\pi/6} (2 \cos^2 \theta - 3/2) d\theta
$$

= $2 \int_0^{\pi/6} (\cos 2\theta - 1/2) d\theta = \sin 2\theta - \theta \Big|_0^{\pi/6} = \sin \pi/3 - \pi/6 = \sqrt{3}/2 - \pi/6.$

(b) (10 points) Find the arc length of the boundary of the region of part (a).

Answer:

The points of intersection are the same as in part (a). Thus,

$$
s = \int_{-\pi/6}^{\pi/6} \sqrt{(\sqrt{3})^2 + 0^2} \, d\theta + \int_{-\pi/6}^{\pi/6} \sqrt{(2\cos\theta)^2 + (-2\sin\theta)^2} \, d\theta
$$

= $2 \int_{0}^{\pi/6} \sqrt{3} \, d\theta + 4 \int_{0}^{\pi/6} \, d\theta$
= $\frac{\pi\sqrt{3}}{3} + \frac{2\pi}{3} = \frac{\pi(2+\sqrt{3})}{3}.$

7. (25 points) Find the radius of convergence and interval of convergence of the series

$$
\sum_{n=2}^{\infty} (-1)^n \frac{x^n}{2^n n (\ln n)^3}.
$$

Answer:

Solution: Using ratio test, we have

$$
\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{x^{n+1}}{2^{n+1}(n+1)(\ln(n+1))^3} \frac{2^n n (\ln n)^3}{x^n} \right|
$$

$$
= \left| \frac{x}{2} \right| \cdot \left| \lim_{n \to \infty} \frac{n (\ln(n))^3}{(n+1)(\ln(n+1))^3} \right| = \left| \frac{x}{2} \right|
$$

because by the l'Hospital rule

$$
\lim_{n \to \infty} \frac{\ln n}{\ln(n+1)} = \lim_{n \to \infty} \frac{1/n}{1/(n+1)} = 1.
$$

To have an absolute convergence series, we need to have $\left|\frac{x}{2}\right| < 1$, so $|x| < 2$ and the radius of convergence is 2. Consider the end points at $x = 2$ and $x = -2$, we have

• $x = -2$: The series is equal to

$$
\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^3}.
$$

By the integral test, the convergence of the series is equivalent to the convergence of the integral

$$
\int_2^\infty \frac{1}{x(\ln x)^3} dx.
$$

By letting $\ln x = y$, we can calculate the integral as follows:

$$
\int_2^{\infty} \frac{dx}{x(\ln x)^3} = \int_{\ln 2}^{\infty} \frac{dy}{y^3} = \frac{-1}{2y^2} \Big|_{\ln 2}^{\infty} = \frac{1}{2(\ln 2)^2}.
$$

Therefore, the series is also convergent.

• $x = 2$: The series is equal to

$$
\sum_{n=2}^{\infty} \frac{(-1)^n}{n(\ln n)^3}.
$$

This is absolutely convergent from the case $x = -2$. So, the above series is convergent.

(Note : You may also use the alternating series test for the convergence.)

8. (25 points)

(a) (15 points) Find the Taylor series centered at 0 of the function $\ln(1+x^3)$, as well as radius and interval of convergence.

Answer:

The Taylor series of $\ln(1+x)$ is

$$
\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \dots
$$

with its radius of convergence 1. Therefore, replacing x by x^3 ,

$$
\ln(1+x^3) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^{3n} = x^3 - \frac{x^6}{2} + \frac{x^9}{3} - \dots
$$

and its radius of convergence is also 1.

We check the convergence at the end points $x = \pm 1$. When $x = -1$, the series is

$$
-\sum_{n=1}^{\infty}\frac{1}{n}
$$

and it is diverges because it is the harmonic series. When $x = 1$, we get the alternating harmoninc sereis, which converges by the alternating series test.

Hence the interval of convergence is $(-1, 1]$.

(b) (10 points) Write the integral

$$
\int_0^x \ln(1+t^3)dt
$$

as a power series in x .

Answer:

$$
\int_0^x \ln(1+t^3)dt = \int_0^x \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n} t^{3n} dt
$$

=
$$
\sum_{n=1}^\infty \frac{(-1)^{n+1}}{n} \int_0^x t^{3n} dt
$$

=
$$
\sum_{n=1}^\infty \frac{(-1)^{n+1} x^{3n+1}}{n(3n+1)}
$$

=
$$
\frac{x^4}{4} - \frac{x^7}{2 \cdot 7} + \frac{x^{10}}{3 \cdot 10} - \cdots
$$

The equation holds for $|x| \leq 1$.