Math 162: Calculus IIA

Final Exam, Saturday Edition December 12, 2020

NAME (please print legibly): Your University ID Number: Your University email

Write the name of your proctor here.

Pledge of Honesty

I affirm that I will not give or receive any unauthorized help on this exam and that all work will be my own.

Signature:

Instructions

- **You may not consult the textbook, your notes, the internet, your classmates, friends or any other external source of information. YOUR WEB-CAM MUST BE ON AT ALL TIMES.**
- **If you have access to a printer, you may print this exam and write your answers in the spaces provided. Otherwise, write the answers to each problem on a separate sheet of paper. YOU MUST ALSO WRITE AND SIGN THE PLEDGE OF HONESTY AND GIVE ALL OF THE INFORMATION REQUESTED ABOVE.**
- **Show your work and justify your answers. You may use the formulas on the next page. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.**
- **You must finish work on this exam by 9:15, and then scan and upload it to Gradescope as previously instructed by 9:30. Exams received after that time will be subject to a penalty.**

Trig formulas:

- $\cos^2(x) + \sin^2(x) = 1$
- $sec^2(x) tan^2(x) = 1$

•
$$
\sin(2x) = 2\sin(x)\cos(x)
$$

•
$$
\cos^2(x) = \frac{1 + \cos(2x)}{2}
$$

\n• $\sin^2(x) = \frac{1 - \cos(2x)}{2}$

Trigonometric substitution tricks for odd powers of secant and even powers of tangent:

•
$$
u = \sec(\theta) + \tan(\theta)
$$

• $\sec(\theta)d\theta = \frac{du}{dt}$ u

•
$$
\sec(\theta) = \frac{u^2 + 1}{2u}
$$

• $\tan(\theta) = \frac{u^2 - 1}{2u}$

 $2u$

Integration by parts:

$$
\int u\,dv = uv - \int v\,du
$$

Polar coordinate formulas:

• Area:

$$
\frac{1}{2}\int r^2 d\theta
$$

• Arc length:

$$
\int \sqrt{r^2+\left(\frac{dr}{d\theta}\right)^2}d\theta
$$

Parametric equation formulas:

- Newton's notation: $\dot{x} = dx/dt$ $\dot{y} = dy/dt$
- Slope of tangent line: $dy/dx = \dot{y}/\dot{x}$.
- Second derivative

$$
\frac{d^2y}{dx^2} = \frac{d(\dot{y}/\dot{x})/dt}{\dot{x}}.
$$

Curve is concave up/down when this is positive/negative.

• Arc length:

$$
\int \sqrt{\dot{x}^2 + \dot{y}^2} dt.
$$

Power series formulas:

• MACLAURIN series for $f(x)$:

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)x^n}{n!}
$$

.

• Maclaurin series for specific functions:

$$
e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

\n
$$
\operatorname{cos} x = \sum_{m=0}^{\infty} \frac{(-1)^{m} x^{2m}}{(2m)!}
$$

\n
$$
\operatorname{arctan} x = \sum_{m=0}^{\infty} \frac{(-1)^{m} x^{2m+1}}{2m+1}
$$

\n
$$
\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{n}
$$

\n
$$
(1+x)^{k} = \sum_{n=0}^{\infty} {k \choose n} x^{n}
$$

\nwhere ${k \choose n} = \frac{k(k-1) \cdots (k-n+1)}{n!}$

• TAYLOR series for $f(x)$ about a:

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)(x-a)^n}{n!}.
$$

• The *nth* partial sum of the above, also called the *nth* Taylor polynomial, is

$$
T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)(x-a)^k}{k!},
$$

and the *n*th Taylor remainder is $R_n(x) = f(x) - T_n(x)$. Taylor's inequality says that

$$
|R_n(x)| \le \frac{M|x - a|^{n+1}}{(n+1)!},
$$

when x is in an interval centered at a in which $|f^{(n+1)}| \leq M$.

Consider the solid formed by taking the area between $y = \sqrt[3]{x}$, $y = 2$ and the y-axis, and revolving it about the y-axis.

Suppose x and y are measured in meters, and a container in the shape of the solid were filled with water of density 1000kg/m^3 from the bottom to $y=1$ meter. How much energy (in Joules) would it take to lift the water over the top of the cup? (You can approximate gravitational acceleration by 9.8m/sec^2 .)

Compute the following integral:

$$
\int \frac{2x^2 - x + 4}{x^3 + 4x} dx.
$$

3. (25 points) Find the arc-length of the parametric curve

 $x=2\cos t+\cos 2t\,,\ y=2\sin t-\sin 2t\,,\ 0\leq t\leq 2\pi\,.$

by doing it for $0 \le t \le 2\pi/3$ and multiplying your answer by 3.

YOU MAY WANT TO USE THE TRIG IDENTITIES $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$ and $\sin^2 \theta = (1 - \cos 2\theta)/2.$

The curve for $0 \le t \le 2\pi$ is pictured below.

Let $g : (0, \infty) \to \mathbb{R}$ be a positive, increasing function that satisfies

$$
\lim_{x \to \infty} \frac{g(x)}{x} = 1.
$$

Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

$$
\sum_{n=1}^{\infty} \frac{(-1)^n}{g(n)+n}
$$

5. (20 points) Let r be a real number with $0 < r < 1$. Determine whether the series is absolutely convergent, conditonally convergent, or divergent.

$$
\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^r}.
$$

(10 points) (a) (10 points) Find the area inside the polar curve $r = 2\cos(\theta)$ and outside the polar curve $r =$ √ 2, as shown below.

(b) (10 points) Find the arc length of the boundary of the region of part (a).

7. (25 points) Find the radius of convergence and interval of convergence of the series

$$
\sum_{n=2}^{\infty} (-1)^n \frac{x^n}{3^n n (\ln n)^2}.
$$

(a) (15 points) Find the Taylor series centered at 0 of the function $\ln(1-(x/2)^2)$, as well as the radius and interval of convergence.

(b) (10 points) Write the integral

$$
\int_0^x \ln(1 - (t/2)^2) dt
$$

as a power series in x .