Math 162: Calculus IIA

Final Exam December 16, 2014

NAME (please print legibly): ______ Your University ID Number: ______ Indicate your instructor with a check in the box:

JJ Lee	MWF 9:00 - 9:50 AM	
Doug Ravenel	MWF 10:25 - 11:15 AM	
Geordie Richards	MW 12:30 - 1:45 PM	
Andrew Bridy	MW 4:50-6:05 PM	

- The presence of calculators, cell phones, iPods and other electronic devices at this exam is strictly forbidden. IF YOU HAVE YOUR PHONE WITH YOU, YOU MUST TURN IT IN TO A PROCTOR BEFORE START-ING THE EXAM. FAILURE TO DO SO WILL BE TREATED AS AN ACADEMIC HONESTY VIOLATION.
- Show your work and justify your answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- Put your answers in the space provided at the bottom of each page or half page.
- You are responsible for checking that this exam has all 17 pages.
- Part A covers the same material as the two midterms, and Part B covers additional material. Letter grades will be computed for the two parts separately. Part B will count for 20% of your course grade. It has the same weight as a midterm exam grade.
- Part A will count for at least 10% of your course grade. If your grade on part A is better than your lowest midterm exam grade, then it will replace that midterm exam grade and count for 30% of your course grade.
- Have a nice winter break!

Part A				
QUESTION	VALUE	SCORE		
1	20			
2	15			
3	15			
4	20			
5	15			
6	15			
TOTAL	100			

Part B				
QUESTION	VALUE	SCORE		
7	20			
8	20			
9	20			
10	20			
11	20			
TOTAL	100			

Part A

1. (20 points) Evaluate the integral

$$\int \frac{x^2}{\sqrt{4-x^2}} \, dx.$$

2. (15 points)

Find the volume of the solid obtained by rotating the region bounded by the curves $y = \sqrt{x}$, x = 0, and y = 1 about the line y = 2.

3. (15 points) Evaluate the integral

 $\int \sin(x)\cos(x)e^{\sin x}\,dx.$

(a) Find the partial fraction expansion of

$$\frac{1}{x^3 - 4x^2 + 4x}$$

(b) Evaluate the integral

$$\int \frac{1}{x^3 - 4x^2 + 4x} \, dx$$

(If your answer for part (a) is wrong, you will not receive credit for evaluating the integral of an incorrect function.)

5. (15 points)

Find the arc length of the parametric curve $x(t) = e^t \cos t$, $y(t) = e^t \sin t$ connecting the point (1,0) to the point $(-e^{\pi}, 0)$.

6. (15 points)

Use the area formula in polar coordinates to find the area of the region that is both inside the circle $x^2 + y^2 = 4$ and to the right of the line x = 1.

Part B

7. (20 points)

(a) Find a power series representation centered at 0 of the function as well as the radius and interval of convergence.

$$f(x) = \frac{x}{2+x^2}$$

(b) Write the following function as a power series in x. What is the radius of convergence of this power series?

$$\frac{d}{dx}\left(\frac{x}{2+x^2}\right)$$

Find the radius of convergence and interval of convergence of the series

$$\sum_{n=3}^{\infty} \frac{2^n (x+3)^n}{2n+1}.$$

Final Exam

9. (20 points)

Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

$$\sum_{n=1}^{\infty} \frac{(-1)^n \cdot n}{(1+n^2) \cdot \tan^{-1} n}$$

(a) Find the Taylor series centered at 0 of the function $\cos\sqrt{|x|}$, as well as radius and interval of convergence.

(b) Write the integral

 $\int_0^x \cos\sqrt{|t|} dt$

as a power series in x.

(a) Determine whether the series

$$\sum_{n=0}^{\infty} a_n \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)(2n+1)!}$$

is absolutely convergent, conditionally convergent, or divergent.

(b) Estimate the sum of the series with an accuracy of $\frac{1}{100}.$