Math 162: Calculus IIA

Final Exam ANSWERS December 16, 2014

Part A 1. (20 points) Evaluate the integral

$$
\int \frac{x^2}{\sqrt{4-x^2}} \, dx.
$$

Solution: (a) The simplest approach is to set $x = 2 \sin \theta$. Then $dx = 2 \cos \theta d\theta$ and

$$
\sqrt{4 - x^2} = \sqrt{4 - 4\sin^2\theta} = \sqrt{4\cos^2\theta} = 2\cos\theta.
$$

So

$$
\int \frac{x^2}{\sqrt{4 - x^2}} dx = \int \frac{4 \sin^2 \theta}{2 \cos \theta} 2 \cos \theta d\theta = \int 4 \sin^2 \theta d\theta = \int 2 (1 - \cos(2\theta)) d\theta = 2\theta - \sin(2\theta) + C
$$

To convert back to x, we use the fact that $\sin(2\theta) = 2\sin\theta\cos\theta = \frac{1}{2}$ $rac{1}{2}x$ $4-x^2$. So the answer becomes

$$
2\arcsin\left(\frac{x}{2}\right) - \frac{1}{2}x\sqrt{4 - x^2} + C.
$$

2. (15 points)

Find the volume of the solid obtained by rotating the region bounded by the curves $y =$ √ $\overline{x},$ $x = 0$, and $y = 1$ about the line $y = 2$.

Solution: We use the washer method. First observe that (since $y =$ √ \overline{x} intersects $x = 0$ and $y = 1$ at the points $(0, 0)$ and $(0, 1)$, respectively) the bounds on x this region are given by $0 \le x \le 1$. Then for each x such that $0 \le x \le 1$, the cross section of this solid with the plane passing through x perpendicular to the x-axis is an annulus ("washer") of interior radius $r_1(x) = 2 - 1 = 1$ and exterior radius $r_2(x) = 2 - 1$ √ \overline{x} . This washer has area

 $A(x) = \pi (r_2(x))^2 - \pi (r_1(x))^2 = \pi ((2 - \sqrt{\ }$ $(\overline{x})^2 - 1$). Therefore this solid has volume given by

$$
V = \int_0^1 A(x) dx = \pi \int_0^1 ((2 - \sqrt{x})^2 - 1) dx
$$

= $\pi \int_0^1 (3 - 4\sqrt{x} + x) dx$
= $\pi \left[3x - \frac{8x^{3/2}}{3} + \frac{x^2}{2} \right]_0^1$
= $\pi (3 - \frac{8}{3} + \frac{1}{2}) = \frac{5\pi}{6}.$

3. (15 points) Evaluate the integral

$$
\int \sin(x) \cos(x) e^{\sin x} dx.
$$

Solution: We use the substitution $y = \sin x$. Then $dy = \cos x dx$ and the integral becomes

$$
\int \sin x \cos x e^{\sin x} dx = \int y e^y dy.
$$

Next we integrate by parts. We let $u = y$ and $dv = e^y dy$, so that $du = dy$ and $v = e^y$. The integral becomes

$$
\int ye^y dy = ye^y - \int e^y dy = ye^y - e^y + C.
$$

Changing back to the variable x we conclude that

$$
\int \sin x \cos x e^{\sin x} dx = \sin x e^{\sin x} - e^{\sin x} + C.
$$

4. (20 points)

(a) Find the partial fraction expansion of

$$
\frac{1}{x^3 - 4x^2 + 4x}
$$

(b) Evaluate the integral

$$
\int \frac{1}{x^3 - 4x^2 + 4x} \, dx.
$$

(If your answer for part (a) is wrong, you will not receive credit for evaluating the integral of an incorrect function.)

Solution: (a) First we factor $x^3 - 4x^2 + 4x$ as $x(x - 2)^2$. So

$$
\frac{1}{x^3 - 4x^2 + 4x} = \frac{A}{x} + \frac{B}{x - 2} + \frac{C}{(x - 2)^2}
$$

for some constants A, B , and C . Multiplying through by the denominator gives

$$
1 = A(x - 2)^2 + Bx(x - 2) + Cx.
$$

Setting $x = 2$ immediately gives $C = \frac{1}{2}$ $\frac{1}{2}$, and setting $x = 0$ gives $A = \frac{1}{4}$ $\frac{1}{4}$. Setting $x = 1$ gives $1 = A - B + C$, from which it is easy to get $B = -\frac{1}{4}$ $\frac{1}{4}$. So

$$
\frac{1}{x^3 - 4x^2 + 4x} = \frac{1/4}{x} + \frac{-1/4}{x - 2} + \frac{1/2}{(x - 2)^2}.
$$

(b) Integrating the answer from (a) gives

$$
\frac{1}{4}\ln|x| - \frac{1}{4}\ln|x-2| - \frac{1/2}{x-2}.
$$

5. (15 points)

Find the arc length of the parametric curve $x(t) = e^t \cos t$, $y(t) = e^t \sin t$ connecting the point $(1,0)$ to the point $(-e^{\pi},0)$.

Solution: First observe that the points $(1,0)$ and $(-e^{\pi},0)$ correspond to $t=0$ and $t=\pi$, respectively. It follows that the arc length of this curve is given by

$$
L = \int_0^{\pi} \sqrt{(x'(t))^2 + (y'(t))^2} dt = \int_0^{\pi} \sqrt{(e^t \cos t - e^t \sin t)^2 + (e^t \sin t + e^t \cos t)^2} dt
$$

=
$$
\int_0^{\pi} \sqrt{e^{2t} \cos^2 t - e^{2t} \sin t \cos t + e^{2t} \sin^2 t + e^{2t} \cos^2 t + e^{2t} \sin t \cos t + e^{2t} \sin^2 t} dt
$$

=
$$
\int_0^{\pi} \sqrt{2e^{2t} (\cos^2 t + \sin^2 t)} dt
$$

=
$$
\sqrt{2} \int_0^{\pi} e^t dt = \sqrt{2} [e^t]_0^{\pi} = \sqrt{2} (e^{\pi} - 1).
$$

6. (15 points)

Use the area formula in polar coordinates to find the area of the region that is both inside the circle $x^2 + y^2 = 4$ and to the right of the line $x = 1$.

Solution: In polar coordinates, the equation of the given circle is $r = 2$ and the equation of the given line is $r \cos \theta = 1$, or $r = \sec \theta$. The circle and line intersect when $\sec \theta = 2$, or

 $\cos \theta = \frac{1}{2}$ $\frac{1}{2}$, which happens when θ is $\pi/3$ or $-\pi/3$. By the area formula in polar coordinates, the area is

$$
\int_{-\pi/3}^{\pi/3} \frac{1}{2} \left(2^2 - \sec^2 \theta\right) d\theta = \frac{1}{2} \left(4\theta - \tan \theta\right) \Big|_{-\pi/3}^{\pi/3} = \frac{1}{2} \left(4\pi/3 - \tan(\pi/3) - (-4\pi/3 - \tan(-\pi/3))\right).
$$

So the area is $4\pi/3 -$ √ 3.

Part B

7. (20 points)

(a) Find a power series representation centered at 0 of the function as well as the radius and interval of convergence.

$$
f(x) = \frac{x}{2 + x^2}
$$

(b) Write the following function as a power series in x . What is the radius of convergence of this power series?

$$
\frac{d}{dx}\left(\frac{x}{2+x^2}\right)
$$

Solution: (a)

$$
f(x) = \frac{x}{2} \frac{1}{1 + \frac{x^2}{2}} = \frac{x}{2} \sum_{n=0}^{\infty} \left(-\frac{x^2}{2} \right)^n = \frac{x}{2} \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{2^n} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2^{n+1}}
$$

$$
\left| -\frac{x^2}{2} \right| < 1 \Leftrightarrow |x| < \sqrt{2}.
$$

for

$$
\left| -\frac{x^2}{2} \right| < 1 \Leftrightarrow |x| < \sqrt{2}.
$$

So the radius of convergence $R =$ 2. Now we consider the boundary cases

$$
\left| -\frac{x^2}{2} \right| = 1 \Leftrightarrow x = \pm \sqrt{2}.
$$

We can easily see that the series diverges by the divergence test. So, the interval of convergence is (− µ
∫ 2, √ 2).

(b)

$$
\frac{d}{dx}\left(\frac{x}{2+x^2}\right) = \sum_{n=0}^{\infty} (-1)^n \frac{d}{dx} \frac{x^{2n+1}}{2^{n+1}} = \sum_{n=0}^{\infty} (-1)^n \frac{2n+1}{2^{n+1}} x^{2n}
$$

for $|x|$ < $\sqrt{2}$ by the differentiation theorem. The radius of convergence is $\sqrt{2}$ as well.

8. (20 points)

Find the radius of convergence and interval of convergence of the series

$$
\sum_{n=3}^{\infty} \frac{2^n (x+3)^n}{2n+1}.
$$

Solution: We use the ratio test:

$$
\left| \frac{a_{n+1}}{a_n} \right| = |a_{n+1}| \cdot \left| \frac{1}{a_n} \right| = \frac{2^{n+1} |x+3|^{n+1}}{2(n+1)+1} \cdot \frac{2n+1}{2^n |x+3|^n}
$$

$$
= 2 \cdot \frac{2n+1}{2n+3} \cdot |x+3| \to 2|x+3|
$$

as $n \to \infty$. From

$$
2|x+3| < 1 \Leftrightarrow |x+3| < \frac{1}{2},
$$

the radius of convergence $R=\frac{1}{2}$ $\frac{1}{2}$.

Now consider the boundary case

$$
2|x+3| = 1 \Leftrightarrow 2(x+3) = \pm 1 \Leftrightarrow x = -\frac{5}{2}, -\frac{7}{2}
$$

Plugging these in the original series expression, we get

$$
\sum_{n=3}^{\infty} \frac{(\pm 1)^n}{2n+1},
$$

which diverges for $+1$ by limit comparison with $\sum_{n=3}^{\infty}$ 1 $\frac{1}{2n}$ and converges for -1 by the Alternating series test. So the interval of convergence is $\left[-\frac{7}{2}\right]$ $\frac{7}{2}, -\frac{5}{2}$ $\frac{5}{2}$.

9. (20 points)

Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

$$
\sum_{n=1}^{\infty} \frac{(-1)^n \cdot n}{(1+n^2) \cdot \tan^{-1} n}
$$

Solution:

First, consider the series $\sum_{n=1}^{\infty}$ $\frac{n}{(1+n^2)\cdot \tan^{-1} n}$ for absolute convergence. Since

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

diverges by p-series test and

$$
\lim_{n \to \infty} \frac{n}{(1 + n^2) \cdot \tan^{-1} n} \cdot n = \frac{2}{\pi},
$$

by the limit comparison test, the series diverges.

If we consider the series $\sum_{n=1}^{\infty}$ $(-1)^n \cdot n$ $\frac{(-1)^n \cdot n}{(1+n^2)\cdot \tan^{-1} n}$, since $\frac{n}{1+n^2}$ is positive and decreasing to 0 and $\frac{1}{\tan^{-1} n}$ is positive and decreasing, $\frac{n}{(1+n^2)\cdot \tan^{-1} n}$ is positive and decreasing to 0 and by the alternating series test, the series converges.

So, the series is conditionally convergent.

10. (20 points)

(a) Find the Taylor series centered at 0 of the function $\cos\sqrt{|x|}$, as well as radius and interval of convergence.

(b) Write the integral

$$
\int_0^x \cos\sqrt{|t|} dt
$$

as a power series in x .

Solution: (a) The Taylor series of $\cos x$ is

$$
\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots,
$$

which converegs for all x. Therefore, replacing x by $\sqrt{|x|}$ gives,

$$
\cos\sqrt{|x|} = \sum_{n=0}^{\infty} \frac{(-1)^n (\sqrt{|x|})^{2n}}{(2n)!} = \sum_{n=0}^{\infty} \frac{(-1)^n x^n}{(2n)!} = 1 - \frac{x}{2!} + \frac{x^2}{4!} - \dots,
$$

which also converges for all x .

(b)

$$
\int_0^x \cos\sqrt{|t|} dt = \int_0^x \sum_{n=0}^\infty \frac{(-1)^n t^n}{(2n)!} dt = \sum_{n=0}^\infty \int_0^x \frac{(-1)^n t^n}{(2n)!} dt
$$

=
$$
\sum_{n=0}^\infty \frac{(-1)^n x^{n+1}}{(n+1)(2n)!} dt
$$

=
$$
x - \frac{x^2}{2 \cdot 2!} + \frac{x^3}{3 \cdot 4!} - \dots = x - \frac{x^2}{4} + \frac{x^3}{72} - \dots
$$

The equation holds for all x .

11. (20 points)

(a) Determine whether the series

$$
\sum_{n=0}^{\infty} a_n \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)(2n+1)!}
$$

is absolutely convergent, conditionally convergent, or divergent.

(b) Estimate the sum of the series with an accuracy of $\frac{1}{100}$.

Solution: a)Using the ratio test,

$$
\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \left(\frac{(-1)^{n+1}}{(2n+3)(2n+3)!} \cdot \frac{(2n+1)(2n+1)!}{(-1)^n} \right)
$$

$$
= -\frac{2n+1}{(2n+3)(2n+2)(2n+3)}
$$

$$
= 0,
$$

so the series is absolutely convergent.

b) Since this is an alternating series, we wish to find n such that

$$
\left| \frac{(-1)^n}{(2n+1)(2n+1)!} \right| < 100
$$

This is false for $n = 0, 1$, but for $n = 2$ we have $\frac{1}{5 \cdot 5!} = \frac{1}{600} < \frac{1}{100}$ Hence the sum

$$
s_1 = 1 - \frac{1}{3 \cdot 3!} = 1 - \frac{1}{18} = \frac{17}{18}
$$

is accurate to within 1/100.