Part I

1. Compute the following integrals.

(a)
$$\int \frac{\sin(\sqrt{x})}{\sqrt{x}} dx$$

(b)
$$\int \frac{3x+1}{x^2+x-2} dx$$

(c)
$$\int xe^x dx$$

(d)
$$\int \sin^2(3x+2) \, dx$$

(e)
$$\int \sin^3(x) \cos^2(x) \, dx$$

Solutions to Problem 1

(a) Try substitution $u = \sqrt{x}$ then $\frac{du}{dx} = \frac{1}{2\sqrt{x}}$ and so $du = \frac{dx}{2\sqrt{x}}$ and the integral becomes

$$2\int \sin(u)du = -2\cos(u) + C.$$

Plugging back in terms of the original variable we get:

 $-2\cos(\sqrt{x}) + C$ as our answer.

(b) Factor the denominator as (x+2)(x-1) and perform a partial fraction expansion:

$$\frac{3x+1}{(x+2)(x-1)} = \frac{A}{x+2} + \frac{B}{x-1}$$

Integrating we find:

$$\int \frac{3x+1}{(x+2)(x-1)} dx = Aln(x+2) + Bln(x-1) + C$$

where C is an integration constant.

To solve for A and B we clear denominators in the partial fraction expansion:

$$3x + 1 = A(x - 1) + B(x + 2)$$

Plugging in x = 1 we find 4 = 3B so $B = \frac{4}{3}$. Plugging in x = -2 we find -5 = -3A so $A = \frac{5}{3}$.

Thus our final answer is:

$$\int \frac{3x+1}{(x+2)(x-1)} dx = \frac{5}{3} \ln(x+2) + \frac{4}{3} \ln(x-1) + C$$

1

(c) Integration by parts with u = x, $dv = e^x dx$. Then du = dx and $v = e^x$. So integral becomes:

$$\int u dv = uv - \int v du = xe^x - \int e^x dx = xe^x - e^x + C$$

where C is an integration constant.

(d) First do a substitution u = 3x + 2 then du = 3dx and the integral becomes

$$\frac{1}{3} \int \sin^2(u) du = \frac{1}{6} \int [1 - \cos(2u)] du = \frac{1}{6} [u - \frac{\sin(2u)}{2}] + C$$

where in the first equality above we used a half-angle trig formula. Plugging back for the original variable x we find the answer to be:

$$\frac{1}{6}[3x+2-\frac{\sin(6x+4)}{2}]+C$$

(e) Odd number of sines so do a u = cos(x) substitution. Then du = -sin(x)dx and $sin^2(x) = 1 - cos^2(x) = 1 - u^2$ so the integral becomes:

$$\int \sin^2(x)\cos^2(x)\sin(x)dx = -\int (1-u^2)u^2du = \int (u^4-u^2)du = \frac{u^5}{5} - \frac{u^3}{3} + C$$

Plugging back for the original variable x we find the answer is:

$$\frac{\cos^5(x)}{5} - \frac{\cos^3(x)}{3} + C.$$

2.

- (a) Find the area of the region enclosed by $y = x^3 x$ and y = 3x.
- (b) Find the volume of the solid obtained by rotating the region bounded by $y = 3 + 2x x^2$ and y = 3 x about the line y-axis.
- (c) Find the volume of the solid obtained by rotating the region bounded by y = x and $y = \sqrt{x}$ about the line y = 1.
- (d) A spring has a natural length of 20cm. If a 25-N force is required to keep it stretched to a length of 30 cm, how much work is required to stretch it from 20cm to 25cm?.

Solutions to Problem 2

(a) First solving $3x = x^3 - x$ we get $4x = x^3$ so either x = 0 or $4 = x^2$ so curves intersect at three points when x = 0(y = 3), x = 2(y = 6) and x = -2(y = -6). Drawing a graph shows that between x = -2 and x = 0 the $y = x^3 - x$ curve is on top and between x = 0 and x = 2 the line y = 3x is on top. Thus the area enclosed between the curves is in two pieces and is given by:

$$\int_{-2}^{0} (x^3 - x - 3x) dx + \int_{0}^{2} (3x - (x^3 - x)) dx = \int_{-2}^{0} (x^3 - 4x) dx + \int_{0}^{2} (4x - x^3) dx$$

Doing the integrals we find the answer is:

$$\left(\frac{x^4}{4} - 2x^2\right)|_{-2}^0 + \left(2x^2 - \frac{x^4}{4}\right)|_0^2 = \left(0 - \left(\frac{16}{4} - 8\right)\right) + \left(8 - \frac{16}{4}\right) = 8 \text{ unit}^2$$

(b) First note that one curve is a parabola pointing downwards and the other is a line with slope -1 and y-intercept 3. Solving for intersections we look at $3 + 2x - x^2 = 3 - x$ i.e., $3x = x^2$ which has solutions x = 0(y = 3) and x = 3(y = 0). Drawing a graph, we can see that between x = 0 and x = 3, the parabola is on top and to the right of the line. Since we rotate about the y-axis, we might try $V = \int A(y)dy$. However it is difficult to find A(y) in terms of y in this case. Thus we will use the method of cylindrical shells. Thus

$$V = \int_0^3 (2\pi x)(y_{top} - y_{bottom})dx$$

Here $2\pi x$ represents the circumference of a typical cylindrical shell, $(y_{top} - y_{bottom})$ its height and dx its thickness. Plugging in we get the volume to be:

$$\int_0^3 (2\pi x)(3+2x-x^2-(3-x))dx = 2\pi \int_0^3 (3x^2-x^3)dx = 2\pi (x^3-\frac{x^4}{4})|_0^3 = 2\pi (27-\frac{81}{4}) = \frac{27}{2}\pi \text{ unit}^3$$
(c) We can find intersection points readily as usual at $x=0(y=0)$ and $x=1(y=1)$. (Solve $x=\sqrt{x}$ by squaring both sides to get $x^2=x$ etc.) Graphing, we see that between $x=0$ and $x=1$, the curve is a above and to the left of the line. We may evaluate the integral by the method of cylindrical shells again however this time we are rotating around a horizontal line so it will be a dy integral. For a given cylindrical shell at location $0 \le y \le 1$, we see the circumference will be given by $2\pi (1-y)$, the thickness by dy and the height by $x_{right}-x_{left}$.

Thus the volume is given by:

$$V = \int_0^1 2\pi (1 - y)(x_{right} - x_{left})dy = \int_0^1 2\pi (1 - y)(y - y^2)dy$$

Here for the right curve, we had $y = \sqrt{x}$ so $x = y^2$ etc.

Evaluating the integral we get:

$$V = 2\pi \int_0^1 (y - 2y^2 + y^3) dy = 2\pi \left[\frac{y^2}{2} - \frac{2y^3}{3} + \frac{y^4}{4} \right] \Big|_0^1 = 2\pi \left[\frac{1}{2} - \frac{2}{3} + \frac{1}{4} \right] = \frac{\pi}{6} \text{ unit}^3$$

(d) $F_{spring} = kx$ for an ideal spring where x is the displacement from the natural length and k is the spring constant. From the data given we can find k via: 25 = k(10) (note x is displacement from the natural length) so $k = \frac{5}{2} \frac{N}{cm}$. Let y be the location of the endpoint of the spring (with other end at y = 0) then the work to stretch the string from y = 20 to y = 25 is given by:

$$W = \int_{20}^{25} F_{spring} dy = \int_{20}^{25} k(y - 20) dy = \int_{0}^{5} kx dx$$

Here we note displacement x from the natural length is given by x = y - 20 in the above. Thus

$$W = k\frac{x^2}{2}|_0^5 = k\frac{25}{2} = \frac{5}{2}\frac{25}{2} = \frac{125}{4}Ncm$$

Since 100cm = 1m we can multiply by a conversion factor of $\frac{1m}{100cm}$ to find $W = \frac{125}{400}Nm = \frac{5}{16}Joules$.

3. Three improper integrals are given below. Indicate whether they are convergent or divergent and evaluate those which are convergent.

(a)
$$\int_{-1}^{1} \frac{e^x}{e^x - 1} dx$$

(b)
$$\int_{-\infty}^{-\infty} \frac{\ln(x)}{x^2} dx$$

(b)
$$\int_{-\infty}^{\infty} \frac{x^2}{9 + x^6} dx$$

Solutions to Problem 3

(a) Improper at x=0 so break it up as $\int_{-1}^{0} \frac{e^x}{e^x-1} dx + \int_{0}^{1} \frac{e^x}{e^x-1} dx$. Using $u=e^x, du=e^x dx$

we find $\int \frac{e^x}{e^x-1} dx = \int \frac{du}{u-1} = \ln(|u-1|) + C = \ln(|e^x-1|) + C$. As $x \to 0$, we have $\ln(|e^x-1|) \to \ln(0) = -\infty$ and so the integrals diverge.

(b) Evaluate as $\lim_{t\to\infty} \int_1^t \frac{\ln(x)}{x^2} dx$. Use substitution $u=\ln(x), x=e^u, du=\frac{1}{x}dx$ to get $\int \frac{\ln(x)}{x^2} dx = \int ue^{-u} du = -ue^{-u} - e^{-u} + C = \frac{-\ln(x)}{x} - \frac{1}{x} + C$. So we get answer is $\lim_{t\to\infty} (-\frac{\ln(t)}{t} - \frac{1}{t} + 1)$. By L'hopital's rule, $\frac{\ln(t)}{t} \to 0$ as $t \to \infty$ so the integral converges and the value is 1. (c) By a substitution $u=\frac{x^3}{3}, du=x^2dx$ we get that $9u^2=x^6$ and $\int \frac{x^2}{9+x^6} dx = \int \frac{1}{9+9u^2} du = \frac{1}{9}arctan(u) + C = \frac{1}{9}arctan(\frac{x^3}{3}) + C$. Thus the improper integral evaluates as $\frac{1}{9}[arctan(\infty) - arctan(-\infty)] = \frac{1}{9}[\frac{\pi}{2} - -\frac{\pi}{2}] = \frac{\pi}{9}$ and converges.

4.

- (a) Find the length of the curve $y = \ln(x)$, $1 \le x \le \sqrt{3}$.
- (b) Rotate the curve $y = \sqrt{x}$, $4 \le x \le 9$ about the x-axis. Find the surface area.
- (c) Consider the curve given by $x(t) = e^t$, $y(t) = (t-1)^2$. Find the tangent line at time t = 0.
- (d) Set up an integral giving the length of the curve in (c) from $0 \le t \le 4$.
- (e) Set up an integral giving the surface area when the curve in (c) from $0 \le t \le 4$ is rotated about the y-axis.

Solution to Problem 4

(a)
$$\int_1^{\sqrt{3}} \sqrt{\left(\frac{dy}{dx}\right)^2 + 1} dx = \int_1^{\sqrt{3}} \sqrt{\frac{1}{x^2} + 1} dx = \int_1^{\sqrt{3}} \frac{\sqrt{1+x^2}}{x} dx$$
.

There are various ways to do this - none pretty. We do a substitution $x = tan(\theta), dx = sec^2(\theta)d\theta$ and it becomes:

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sqrt{1 + tan^2(\theta)}}{tan(\theta)} sec^2(\theta) d\theta = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{sec(\theta)}{tan(\theta)} sec^2(\theta) d\theta. = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{sec(\theta)}{tan(\theta)} (1 + tan^2(\theta)) d\theta.$$

This becomes:

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} [csc(\theta) + tan(\theta)sec(\theta)]d\theta$$

Since $\frac{d}{d\theta}sec(\theta) = sec(\theta)tan(\theta)$ and $\int csc(\theta)d\theta = \frac{1}{2}ln(\frac{cos(\theta)-1}{cos(\theta)+1})$ we find the answer is

$$\left[\frac{1}{2}ln(\frac{cos(\theta)-1}{cos(\theta)+1})+sec(\theta)\right]|_{\frac{\pi}{4}}^{\frac{\pi}{3}}$$

(b) $S = \int_4^9 2\pi y \sqrt{(\frac{dy}{dx})^2 + 1} dx = \int_2^3 2\pi y \sqrt{1 + (\frac{dx}{dy})^2} dy$. In this case the second integral seems easier so we use $x = y^2$ so $\frac{dx}{dy} = 2y$ and get

$$S = \int_{2}^{3} 2\pi y \sqrt{1 + 4y^{2}} dy = \int_{17}^{37} \frac{\pi}{4} \sqrt{u} du = \frac{\pi}{6} u^{\frac{3}{2}}|_{17}^{37} = \frac{\pi}{6} ((37)^{3/2} - (17)^{3/2}) \text{ unit}^{2}.$$

where we used the *u*-substitution $u = 1 + 4y^2$.

(c) $\frac{dy}{dx} = \frac{(dy/dt)}{dx/dt} = \frac{2(t-1)}{e^t}$. At t = 0, $\frac{dy}{dx} = -2$ and so tangent line is of the form y = -2x + b. Since the curve goes thru (1,1) at t = 0 we find that 1 = -2 + b so b = 3 and so the tangent line is y = -2x + 3.

line is
$$y = -2x + 3$$
.
(d) $\int_0^4 \sqrt{(\frac{dy}{dt})^2 + (\frac{dx}{dt})^2} dt = \int_0^4 \sqrt{4(t-1)^2 + e^{2t}} dt$.

(e)
$$\int_0^4 2\pi x \sqrt{(\frac{dy}{dt})^2 + (\frac{dx}{dt})^2} dt = \int_0^4 2\pi e^t \sqrt{4(t-1)^2 + e^{2t}} dt$$
.

- **5.** Consider the curve given in polar coordinates by the equation $r = 1 + \cos(\theta)$.
- (a) Give an accurate sketch of this curve.
- (b) Find the area enclosed by one loop of $r = 3\cos(5\theta)$.

Solution to problem 5

- (a) Cardiod curve (see book for sketch.)
- (b) This is a 5-petaled rose that is swept out twice as θ ranges from 0 to 2π . Thus as θ ranges from 0 to π , all five petals are swept out. By symmetry we conclude that the area of one of the five petals is:

$$\frac{1}{5} \int_0^{\pi} \frac{r^2}{2} d\theta = \frac{9}{10} \int_0^{\pi} \cos^2(5\theta) d\theta = \frac{9}{20} \int_0^{\pi} [1 + \cos(10\theta)] d\theta = \frac{9}{20} [\theta + \frac{\sin(10\theta)}{10}]_0^{\pi} = \frac{9\pi}{20} [$$

where we used a half-angle formula.

Part II

6. Consider the following geometric series. Find their sum if they converge or write "divergent" otherwise.

(a)
$$\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{4^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-6)^{n-1}}{5^n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{e^n}{3^{n-1}}$$

Solution to problem 6

(a) Written out, the series is $\frac{1}{4} + \frac{-3}{4^2} + \frac{3^2}{4^3} + \dots$ which is geometric with $a = \frac{1}{4}$ and $r = \frac{-3}{4}$. Since |r| < 1 the series converges to $\frac{a}{1-r} = \frac{\frac{1}{4}}{1+\frac{3}{4}} = \frac{1}{7}$.

(b) Written out, the series is $\frac{1}{5} + \frac{-6}{5^2} + \frac{-6}{5^3} + \dots$ which is geometric with $a = \frac{1}{5}$ and $r = \frac{-6}{5}$. Since $|r| \ge 1$, the series diverges. (Note: The formula $\frac{a}{1-r}$ is only valid when |r| < 1 i.e., when the series converges. Don't use it when $|r| \ge 1!!!$)

(c) Writing it out as usual, we see the series is geometric with a=e and $r=\frac{e}{3}$. Since |r|<1 the series converges to $\frac{a}{1-r}=\frac{e}{\frac{e}{3}}=3$.

7. Determine whether each of the following series is Absolutely Convergent (AC), converges but is not absolutely convergent, i.e. is Conditionally Convergent (CC), or is Divergent (D) and give a short reason why. For example, $\sum_{n=1}^{\infty} \frac{\ln(n)}{n}$ is D by comparison with the Harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$.

(a)
$$\sum_{n=1}^{\infty} \frac{2^n n!}{(n+2)!}$$

(b)
$$\sum_{n=1}^{\infty} \frac{n^2 - 1}{n^2 + 1}$$

(c)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n \ln(n)^2}$$

(d)
$$\sum_{n=1}^{\infty} \frac{1}{n^3 + 3n^2}$$

(e)
$$\sum_{n=1}^{\infty} \frac{(-2)^{2n}}{n^n}$$

Solutions to Problem 7

(a) Expanding factorials and cancelling common terms we see $a_n = \frac{2^n n!}{(n+2)!} = \frac{2^n}{(n+2)(n+1)}$. As $n \to \infty$, the exponential dominates and $\lim_{n\to\infty} a_n = \infty \neq 0$ thus the series diverges as the terms being summed to not head towards zero. (D)

(b) $a_n = \frac{n^2 - 1}{n^2 + 1}$. Again as $\lim_{n \to \infty} a_n = 1 \neq 0$ we see the series diverges as the terms being summed to not head towards zero. (D)

(c) $a_n = \frac{(-1)^n}{nln(n)^2}$. Note $|a_n| = \frac{1}{nln(n)^2}$. Since $f(x) = \frac{1}{xln(x)^2}$ is a decreasing, positive, continuous function on $[2, \infty)$, the integral test shows that $\sum_{n=2}^{\infty} |a_n|$ converges if and only if $\int_2^{\infty} f(x) dx$ converges. Calculating the integral with a substitution u = ln(x), $du = \frac{1}{x}dx$ we get:

$$\int_{2}^{\infty} \frac{1}{x l n(x)^{2}} dx = \int_{l n(2)}^{\infty} \frac{1}{u^{2}} du = \frac{-1}{u} |_{l n(2)}^{\infty} = \frac{1}{l n(2)}$$

Thus the integral converges and hence $\sum_{n=2}^{\infty} |a_n|$ converges and hence $\sum_{n=2}^{\infty} a_n$ converges absolutely. (AC).

(d) Here $a_n = \frac{1}{n^3 + 3n^2}$. Consider the series $\sum_{n=1}^{\infty} b_n$ where $b_n = \frac{1}{n^3}$. Since $\lim_{n \to \infty} \frac{a_n}{b_n} = 1$ the limit comparison test shows that $\sum_{n=1}^{\infty} \frac{1}{n^3 + 3n^2}$ converges if and only if $\sum_{n=1}^{\infty} \frac{1}{n^3}$ converges. This latter series converges as it is a *p*-series with p = 3 > 1. Thus the answer is (AC) (note series has positive terms).

(e) $a_n = \frac{(-2)^{2n}}{n^n}$. Thus $|a_n|^{\frac{1}{n}} = \frac{|2|^2}{n}$ and $\lim_{n\to\infty} |a_n|^{\frac{1}{n}} = 0 < 1$. Thus by the root test, the series converges absolutely. (AC)

- **8.** Consider the power series $\sum_{n=1}^{\infty} \frac{(3x-2)^n}{n^2 5^n}$
- (a) Find the radius of convergence of this power series.
- (b) Find the interval of convergence of this power series (be sure to check endpoints).

Solutions to problem 8 (a) Can use the ratio test or just use the formula $R = \lim_{n\to\infty} \frac{|c_n|}{|c_{n+1}|}$. If we use the formula we have to be careful to take the right c_n . In this formula c_n is the coefficient in front of $(x-\alpha)^n$ in general. Thus we have to rewrite our power series as $\sum_{n=1}^{\infty} \frac{3^n}{n^2 5^n} (x-\frac{2}{3})^n$ to see $c_n = \frac{3^n}{n^2 5^n}$ and that the power series is centered at

 $\alpha = \frac{2}{3}$. We compute

$$R = \lim_{n \to \infty} \frac{|c_n|}{|c_{n+1}|} = \lim_{n \to \infty} \frac{\frac{3^n}{n^2 5^n}}{\frac{3^{n+1}}{(n+1)^2 5^{n+1}}} = \lim_{n \to \infty} \frac{5(n+1)^2}{3n^2} = \frac{5}{3}.$$

(b) The endpoints of the interval of convergence are $\frac{2}{3} - \frac{5}{3} = -1$ and $\frac{2}{3} + \frac{5}{3} = \frac{7}{3}$. At x = -1 the series becomes $\sum_{n=1}^{\infty} \frac{(-5)^n}{n^2 5^n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ which converges in fact absolutely as $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges. (p-series with p = 2 > 1.)

On the other hand at $x = \frac{7}{3}$ the series becomes $\sum_{n=1}^{\infty} \frac{1}{n^2}$ (after simplification) and this again converges as it is a p-series with p = 2 > 1. Thus the series actually converges at the two end points of the interval and so the interval of convergence is: $-1 \le x \le \frac{7}{3}$.

9. Each of the functions below has a Taylor series about x=0. Find the Taylor series.

(a)
$$\frac{\cos(x) - 1}{x^2}$$

(b)
$$\frac{x}{1+x^3}$$

(c)
$$\int \sin(x^2) \, dx$$

(d)
$$\frac{d}{dx}xe^{x^3}$$

(e)
$$\ln(1-x)$$

(f) $\arctan(x)$

Solution to problem 9

(a) We know $cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$ thus

$$cos(x) - 1 = \sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = -\frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$

Thus

$$\frac{\cos(x) - 1}{x^2} = \sum_{n=1}^{\infty} \frac{(-1)^n x^{2n-2}}{(2n)!} = -\frac{1}{2!} + \frac{x^2}{4!} - \frac{x^4}{6!} + \dots$$

(b) We know that

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n \text{ for } |x| < 1$$

Substituting $-x^3$ for x we get

$$\frac{1}{1+x^3} = 1 - x^3 + x^6 - x^9 + \dots = \sum_{n=0}^{\infty} (-1)^n x^{3n} \text{ for } |x^3| < 1$$

Multiplying by x we get:

$$\frac{x}{1+x^3} = x - x^4 + x^7 - x^{10} + \dots = \sum_{n=0}^{\infty} (-1)^n x^{3n+1} \text{ for } |x| < 1$$

(c) We know that

$$sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

Replacing x with x^2 we get

$$sin(x^{2}) = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4n+2}}{(2n+1)!} = x^{2} - \frac{x^{6}}{3!} + \frac{x^{10}}{5!} - \frac{x^{14}}{7!} + \dots$$

Integrating we get:

$$\int \sin(x^2)dx = \sum_{n=0}^{\infty} \frac{(-1)^n x^{4n+3}}{(4n+3)(2n+1)!} + C = \frac{x^3}{3} - \frac{x^7}{(7)(3!)} + \frac{x^{11}}{(11)(5!)} - \frac{x^{15}}{(15)(7!)} + \dots + C$$

where C is an integration constant.

(d) We start with

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

and substitute x^2 for x to get

$$e^{x^2} = \sum_{n=0}^{\infty} \frac{x^{2n}}{n!}$$

Multiply by x to get

$$xe^{x^2} = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{n!}$$

Finally we differentiate both sides to get:

$$\frac{d}{dx}xe^{x^{2}} = \sum_{n=0}^{\infty} \frac{(2n+1)x^{2n}}{n!}$$

(e) We start with

$$\frac{1}{1-x} = 1 + x + x^2 + \dots = \sum_{n=0}^{\infty} x^n \text{ for } |x| < 1$$

The we integrate both sides to get

$$-ln(1-x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \dots + C = \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} + C \text{ for } |x| < 1$$

where C is an integration constant. Putting in x = 0 we see that C = 0 as ln(1) = 0. Thus we get:

$$ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots = -\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}$$
 for $|x| < 1$

(f) Start with series for $\frac{1}{1-x}$. Substitute $-x^2$ for x to get the series for $\frac{1}{1+x^2}$. Finally integrate to get the series for arctan(x). Answer is:

$$arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$$
 for $|x| < 1$

(a) Write down the general form of the Taylor series of a function f(x) at x = a (or about x = a or centered at x = a).

10.

(b) Write down the Taylor series for $f(x) = \ln(x)$ at x = 5. You can either use summation notation or write down the first 5 non-zero terms.

Solution to Problem 10

(a)
$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)(x-a)^n}{n!}$$
.

(c)
$$f(x) = ln(x) = f^{(0)}(x)$$
. We compute $f^{(1)}(x) = \frac{1}{x}$, $f^{(2)}(x) = \frac{-1}{x^2}$, $f^{(3)}(x) = \frac{2}{x^3}$, $f^{(4)}(x) = \frac{-6}{x^4}$. Plugging in $x = 5$ we get: $f^{(0)}(5) = ln(5)$, $f^{(1)}(5) = \frac{1}{5}$, $f^{(2)}(5) = \frac{-1}{25}$, $f^{(3)}(5) = \frac{2}{125}$, $f^{(4)}(5) = \frac{-6}{5^4}$. Thus the first 5 terms of the Taylor series are:

$$f(x) = \ln(5) + \frac{1}{5}(x-5) + \frac{-1}{(25)2!}(x-5)^2 + \frac{2}{(125)(3!)}(x-5)^3 + \frac{-6}{(5^4)(4!)}(x-5)^4 + \dots$$