Part 1

1. Compute the following integrals.
@ [0
NG
1
(b) / _de4l

24+ —2

(¢) / xe” dx
(d) /sin2(3m +2)dx

(e) sin®(z) cos?(z) dx
Solutions to Problem 1
du 1

a Yy substitution u = 4/ then ——- = ;== and SO a = 5 = an 1€ Integral becomes
Try substituti then % = 52~ and so du = 3% and the integral b

2/sin(u)du = —2cos(u) + C.

Plugging back in terms of the original variable we get:
—2cos(y/z) + C as our answer.
(b) Factor the denominator as (x + 2)(x — 1) and perform a partial fraction expansion:

3r+1 A B

(x+2)(x—1) x+2+x—l

Integrating we find:

3z +1
/ (x +2)(z — 1)d1’ = Aln(z +2) + Bin(z — 1) + C

where C' is an integration constant.

To solve for A and B we clear denominators in the partial fraction expansion:

3t+1=A(x —1)+ Bz + 2)

Plugging in # = 1 we find 4 = 3B so B = %. Plugging in x = —2 we find —5 = —3A4 so

3
_ 5
Afg.

Thus our final answer is:

3r+1 5 4
~2 2) + —In(z — 1
/(a:+2)(a:—1)dx 3ln(a:+ )+3ln(:c )+ C



(¢) Integration by parts with u = z, dv = e"dzx. Then du = dzx and v = e€*. So integral

becomes:

/udv:uv—/vdu-xez—/e‘”dx:xem—ez—i-C

where C' is an integration constant.
(d) First do a substitution u = 3z + 2 then du = 3dx and the integral becomes

%/Sinz(u)du = %/[1 — cos(2u)|du = %[u — sinéQu)] +C

where in the first equality above we used a half-angle trig formula. Plugging back for the

original variable x we find the answer to be:

1 ) 4
Ligypyo_smlrtd),
6 2
(e) Odd number of sines so do a u = cos(z) substitution. Then du = —sin(xz)dzr and

sin?(z) = 1 — cos?(x) = 1 —u? so the integral becomes:
FER

/sin2(x)0082(x)sin(q:)dx S /(1 — w?)uldu = /(u4 —w)du= £~ 5+ C

Plugging back for the original variable x we find the answer is:

cos’(xz)  cos’(x)
) 3

+ C.

3

(a) Find the area of the region enclosed by y = 2° — x and y = 3.

(b) Find the volume of the solid obtained by rotating the region bounded
by y = 3 + 2z — 2% and y = 3 — z about the line y-axis.

(¢) Find the volume of the solid obtained by rotating the region bounded

by y = x and y = /2 about the line y = 1.

(d) A spring has a natural length of 20cm. If a 25-N force is required to
keep it stretched to a length of 30 ¢cm, how much work is required to

stretch it from 20cm to 25e¢m?.



Solutions to Problem 2

3 3 2

(a) First solving 3z = 2° — x we get 4o = 2° so either = 0 or 4 = z° so curves intersect

at three points when x = 0(y = 3), z = 2(y = 6) and = = —2(y = —6). Drawing a graph

3 — 2 curve is on top and between z = 0

shows that between x = —2 and x = 0 the y =z
and z = 2 the line y = 3z is on top. Thus the area enclosed between the curves is in two

pieces and is given by:

/0 (% — & — 32)dx + /02(395 ~ (2F — z))da = /O (2% — d)dx + /02(4;1; — MVda

—2 -2

Doing the integrals we find the answer is:

xt 16

(C o)+ (207~ TR = (0 (5~ ) + (8- ) = 8 unit?

(b) First note that one curve is a parabola pointing downwards and the other is a line with
slope —1 and y-intercept 3. Solving for intersections we look at 3 + 22 — 2% = 3 — 7z i.e.,
3z = x? which has solutions # = 0(y = 3) and z = 3(y = 0). Drawing a graph, we can see
that between z = 0 and = = 3, the parabola is on top and to the right of the line. Since we
rotate about the y-axis, we might try V = [ A(y)dy. However it is difficult to find A(y) in

terms of y in this case. Thus we will use the method of cylindrical shells. Thus

3
V= / (27T'T) (ytop - ybottom)d-r
0

Here 2ma represents the circumference of a typical cylindrical shell, (yiop — Ybottom) its height
and dx its thickness. Plugging in we get the volume to be:
x? 81

3 3
2
/ (27z) (3422 —2%—(3—17))dz = 27T/ (32°—2%)dx = 27r(x3—z)|g = 2%(27—1) = ;ﬂ unit?
0 0

(¢) We can find intersection points readily as usual at ¢ = 0(y = 0) and x = 1(y = 1). (Solve
x = \/x by squaring both sides to get 22 = x etc. ) Graphing, we see that between z = 0
and x = 1, the curve is a above and to the left of the line. We may evaluate the integral by
the method of cylindrical shells again however this time we are rotating around a horizontal
line so it will be a dy integral. For a given cylindrical shell at location 0 <y < 1, we see the

circumference will be given by 27(1 —y), the thickness by dy and the height by ,ignt — Zie e



Thus the volume is given by:

1 1
V= / 27T(1 - y)(xright - xleft)dy - / 27T(1 - y)(y - yQ)dy
0 0

Here for the right curve, we had y = /7 so z = y? etc.
Evaluating the integral we get:

1
1 2 1
V:27T/0(y—2y2+y3)dy—27r[y———+— §—§+Z]:%umt3
(d) Fspring = kx for an ideal spring where z is the displacement from the natural length
and k is the spring constant. From the data given we can find k via: 25 = k(10) (note z
N

is displacement from the natural length) so k = g% Let y be the location of the endpoint

of the spring (with other end at y = 0) then the work to stretch the string from y = 20 to

25 25 5
W = / Fopringdy = / k(y —20)dy = / kxdx
20 20 0

Here we note displacement x from the natural length is given by x = y — 20 in the above.

Thus

y = 25 is given by:

x? 25 525 125
gh=kg =55 = Nem
Since 100cm = 1m we can multiply by a conversion factor of 1015?m to find W = %N m =

5
G Joules.

3. Three improper integrals are given below. Indicate whether they are convergent or

divergent and evaluate those which are convergent.

Soluti_ons to Problem 3

xT .
=—dr. Using u = ", du = e"dx

eilda: + fol

eE

(a) Improper at z = 0 so break it up as ffl

4



we find [Sdr = [2 = In(ju —1]) + C = In(le" — 1]) + C. As * — 0, we have

In(|le* — 1|) — In(0) = —oco and so the integrals diverge.

(b) Evaluate as lim;_, o ft h;x dz. Use substitution u = In(z),z = e*,du = dz to get

i %dm = [ue™du = —ue "—e "4+C = M 24+C. So we get answer is limtﬁm(—@—

In(t)

% +1). By L’hopital’s rule, == — 0 as ¢ — oo so the integral converges and the value is 1.

(c) By a substitution u = %3 du = z*dz we get that 9u? = 2% and [ ﬁiﬁdx = [ 5r6mdu =
[y

w -

)+ C. Thus the improper integral evaluates as #[arctan(oo) —

Yarctan(u) + C = Larctan( 5

9

|

9
5 — —%) = 5 and converges.

arctan(—o0)] = g 5

(a) Find the length of the curve y = In(z), 1 < 2 < /3.

(b) Rotate the curve y = \/x, 4 < x < 9 about the z-axis. Find the surface

area.

(¢) Consider the curve given by z(t) = €', y(t) = (t—1)?. Find the tangent

line at time t = 0.
(d) Set up an integral giving the length of the curve in (¢) from 0 < ¢t < 4.

(e) Set up an integral giving the surface area when the curve in (c) from

0 <t <4 is rotated about the y-axis.

Solution to Problem 4

a) [V3 (2 4 1de = [P\ )5 + 1de = [P 2 gy

There are various ways to do this - none pretty. We do a substitution z = tan(0),dz =

sec?(0)df and it becomes:

/ ' 1;56”12 sec?(0)do = /}f sec(6) sec(0)d. = /g sec(6) (1 + tan®(0))do

= tan() ~ tan(0)

This becomes:

/13 [esc(0) + tan(0)sec(8)|do



Since Lsec() = sec(@)tan(d) and [ csc(0)dl = Lin(229=1Y we find the answer is
0 2

cos(0)+1
1 cos(0) —1 x
—In(———— 0)]|2
[2 n(cos(H) + 1) T+ secl )”Z
) S = f4 21y / (2)2 + 1dz = f2 2y, /1 + (d””)Qdy In this case the second integral seems
easier so we use r = y* so % = 2y and get

3
S = / 2nyy/1 + 4y?dy = \/_du = —u2 |37 ((37)3/2 (17)*?) unit?.
2

where we used the u-substitution v = 1 + 4y2.

(c) & = (Z%‘;? — 20 1) At t =0, 2 = —2 and so tangent line is of the form y = —2z +b.
Since the curve goes thru (1,1) at t = 0 we find that 1 = =2+ b so b = 3 and so the tangent
line is y = —2x + 3.

d) [0/ (W2 4 (do)2g8 = [\ /At — 1)2 + e2dt.

fo 21z (dt)2 (22)2dt = fo 2mel\/A(t — 1)% + e?dt.

5. Consider the curve given in polar coordinates by the equation r = 1 + cos(0) .

(a) Give an accurate sketch of this curve.

(b) Find the area enclosed by one loop of r = 3 cos(56) .

Solution to problem 5
(a) Cardiod curve (see book for sketch.)
(b) This is a 5-petaled rose that is swept out twice as 6 ranges from 0 to 2w. Thus as 6
ranges from 0 to m, all five petals are swept out. By symmetry we conclude that the area of

one of the five petals is:

1 [mr? 9 [T 9 [T 9 sin(100) 97
S Dap= 2 250)d0 = — [ [1 100)]d0 = —[o + 20w _ 7
5/, 2 10 J, o 0) 20/0[ + cos(100)[d0 = 510 + —=7— = 55

where we used a half-angle formula.

Part 11



6. Consider the following geometric series. Find their sum if they converge or write “diver-

gent” otherwise.

W ST

(b) Z(_g#

© g

n=1
Solution to problem 6

(a) Written out, the series is 1 + 23 + i—i + ... which is geometric with a = {1 and r = =2
Since |r| < 1 the series converges to ;% = % — 1.

(b) Written out, the series is £ + =7 + = +... which is geometric with a = £ and r = 2%
Since |r| > 1, the series diverges. (Note: The formula % is only valid when |r| < 1 i.e.,
when the series converges. Don’t use it when |r| > 1)

(c) Writing it out as usual, we see the series is geometric with a = e and r = . Since |r| <1

=3.

the series converges to 1% =

wlo|o

7. Determine whether each of the following series is Absolutely Convergent (AC), con-

verges but is not absolutely convergent, i.e. is Conditionally Convergent (CC), or is Divergent

=1
(D) and give a short reason why. For example, Z n(n) is D by comparison with the Har-
n
n=1
monic series i 1
n=1 n
= 2"
(a)
nZ=:1 (n+2)!
= n?—1
b
— (=D"
(€) ; nln(n)?
@ >t
“—~n’+ 3n?
< _2)2n
© 32
n=1



Solutions to Problem 7

. . . !
(a) Expanding factorials and cancelling common terms we see a,, = (212)' =& +22)7(Ln e As

n — 00, the exponential dominates and lim,, .a, = 00 # 0 thus the series diverges as the
terms being summed to not head towards zero. (D)

(b) a, = Zi—ﬁ Again as lim,_..a, = 1 # 0 we see the series diverges as the terms being

summed to not head towards zero. (D)

(¢) ap, = n(an Note |a,| = Since f(z) = ﬁ is a decreasing, positive, continuous

nln(n)2

function on [2, 00), the integral test shows that Y -, |a,| converges if and only if [° f(z)dz

converges. Calculating the integral with a substitution u = In(x), du = %da: we get:

/°° L /°° L= e 1
5 xln(x)? In(2) U2 u ™D In(2)

Thus the integral converges and hence > 7, |a,| converges and hence Y, a, converges
absolutely. (AC).

(d) Here a,, = Consider the series Y >, b, where b, = =5. Since lim, % =1 the

1
n3+3n2 "

. . . o0 1 . 1
limit comparison test shows that )~ -5 o converges if and only if Y7, -5 converges.

This latter series converges as it is a p-series with p = 3 > 1. Thus the answer is (AC) (note
series has positive terms).

(e) an = <‘j,32". Thus |a,|= = % and lim,_so|an|® = 0 < 1. Thus by the root test, the

series converges absolutely. (AC)

(3x —2)™
8. Consider the power series Z o
(a) Find the radius of convergence of this power series.

(b) Find the interval of convergence of this power series (be sure to check endpoints).

Solutions to problem 8 (a) Can use the ratio test or just use the formula R =

|en]
|Cn+1

lim,, E If we use the formula we have to be careful to take the right c,. In this
formula ¢, is the coefficient in front of (z — )™ in general. Thus we have to rewrite our

> = 5= and that th ics | d
power series as Y oo | 3 (z — %) to see ¢, = —3= and that the power series is centered at



_ 2
a = z. We compute

. | , S , 5n+1)2 5
R = lZmn_>oo |C L | = lzmnqw% = lZmnqooT = g
n+1 _(n+1)25n+1
(b) The endpoints of the interval of convergence are 2 —2 = —l and 2+ 2 = I. Atz = —1
the series becomes E;’le(r;?: = Z,‘fle(:;)n which converges in fact absolutely as 322,

converges. (p-series with p =2 > 1.)

On the other hand at # = £ the series becomes 22, % (after simplification) and this
again converges as it is a p-series with p = 2 > 1. Thus the series actually converges at the

two end points of the interval and so the interval of convergence is: —1 < x < %

9. Each of the functions below has a Taylor series about = 0. Find the Taylor series.

b)
(c) / sin(2?) da
(d) %xef”
(&) In(l—uz)

(f) arctan(z)
Solution to problem 9

(a) We know cos(z) = > 7 le—ﬁ—{—%—%—k... thus

n=0 " (2n)! 21
B 00 (_1)nx2n B 1,2 334 1'6
cos(m)—l—; 2n)] _§+I a+
Thus
cos(x) — 1 > (—1)ng2n—2 1 22 2t
(@) :Z< ) __l,z =,
z 2" (2n)! ol T4l 6l
(b) We know that
1 oo
= 1+x+m2+x3+...:;x" for |z < 1



Substituting —z* for x we get

1
1+ a3

Multiplying by = we get:

T
1+ 23

(c) We know that

n 2n+1

sin(x 2n 1)

Replacing z with 22 we get

n 4n—|—2

i) - 3

Integrating we get:

o0 n pAnt3
/ sm +C =

— ( 4n+3 )(2n + 1)!

n
where (' is an integration constant.

(d) We start with

and substitute z? for z to get

Multiply by = to get

(e) We start with

=1-a3+2%—2%+...

=r—at+a" -2 ...

(=1)"z*" for |2°| < 1

WE

3
Il
=)

(=1)"2*"* for |z < 1

Mg

n=0
.T3 ./L'S .T7
=T — ? + a 7' + ...
.’L'G xlO 1,14
B TIRR TR
I3 ./L'7 + .,1/.11 xl‘}
3 (MEYH  (AGYH - (15)(7
n!
n=0
o I2n
o n!
o0 2n+1
n!
n=0
(2n+1)
n!



The we integrate both sides to get

2 3

x x 2, gl
n=0

C f 1
2 3 o1 T forlal <

where C'is an integration constant. Putting in x = 0 we see that C' =0 as In(1) = 0. Thus

we get:
2 3 20 pntl
n(l-z2)=-2—————--- = — f <1
n(l—x) T-5 -3 nZ:O s ||

(f) Start with series for {1-. Substitute —z* for z to get the series for L. Finally integrate

to get the series for arctan(x). Answer is:

3 5 7 o0 (_1)n$2n+1

tan(z) SRR - for |z] < 1
arctan\r) =r — — - e — -~ 7 000000
3 5 7 1 or |z

n=0

(a) Write down the general form of the Taylor series of a function f(z) at = a (or about

x = a or centered at x = a).
10.

(b)  Write down the Taylor series for f(z) = In(z) at £ = 5. You can either use summation

notation or write down the first 5 non-zero terms.

Solution to Problem 10
(a) flz) =%, fM(@)@—ay

n!
(¢) fx) = In(z) = fOx). We compute fD(z) = 1. fP(z) = 7, [D() = 5
f®(z) = =2, Plugging in z = 5 we get: fO(5) = in(5), fH(5) =1, fO(5) = 2, fO(5) =
==, fW(5) = Z&. Thus the first 5 terms of the Taylor series are:

flz) = In(5) + é(m —5)+ — !

(x —5)°+ (x—5)"+...

2 —6
(125)(3!) (5%)(4)

11



