MATH 161 Final Exam

December 15, 2015

NAME (please print legibly): Your University ID Number: _	
Bobkova (TR 9:40)	Bridy (MW 2:00) Doyle (MWF 10:25)
Hambrook (TR 3:25)	Lubkin (MWF 9:00) Murphy (TR 4:50)

Please read the following instructions very carefully:

- By taking this exam, you are acknowledging that the following is prohibited by the College's Honesty Policy: obtaining an examination prior to its administration; using unauthorized aid during an examination or having such aid visible to you during an examination; knowingly assisting someone else during an examination or not keeping your work adequately protected from copying by another.
- Only pens/pencils and a single 3 in. × 5 in. index card with formulas are allowed. The presence of calculators, cell phones, iPods and other electronic devices at this exam is strictly forbidden.
- Show your work and justify your answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given. Clearly circle or label your final answers.

Part A							
QUESTION	VALUE	SCORE					
1	10						
2	20						
3	10						
4	12						
5	15						
6	18						
7	15						
TOTAL	100						

Part B							
QUESTION	VALUE	SCORE					
8	12						
9	12						
10	18						
11	8						
12	15						
13	20						
14	15						
TOTAL	100						

Part A

- 1. (10 points) Mark the following statements as true (T) or false (F) by clearly circling the correct response. You do not need to explain your answers. No partial credit will be given.
- (a) $\lim_{x \to 4^+} \frac{x}{(x-4)^2} = 0$

T F

(b) $\lim_{x \to -\infty} \frac{2x+4}{|x+2|} = 2.$

T F

(c) $\cos^{-1}(\cos(x)) = x$ for all $-\infty < x < \infty$

T F

(d) $\ln(x) - \ln(x^2) = \ln(1/x)$

T F

(e) $\lim_{x \to \infty} \frac{x + \sqrt{4x^2 - x}}{6x} = 1$

T F

2. (20 points) Compute the derivative (with respect to x) of each of the following functions:

(a)
$$\sin(3x) + \sin^3(x) + 3\sin^{-1}(x)$$

(b)
$$xe^x \ln(x)$$

(c)
$$\frac{e^x + e^{-x}}{x^3 + x^{-3}}$$

(d) $\cos(x^2 + \sqrt{x})$

(e) $(\tan(x))^x$

3. (10 points) Answer the following questions about the function f(x), whose graph is shown below:

(a) For which values of a in the interval (-4,6) is f(x) not continuous at a?

(b) For which values of a in the interval (-4,6) is f(x) not differentiable at a?

4. (12 points) Let k be a constant, and consider the function

$$f(x) = \begin{cases} e^{1/(x-2)}, & \text{if } x < 2\\ 2x - k, & \text{if } x \ge 2. \end{cases}$$

(a) Compute $\lim_{x\to 2^-} f(x)$:

(b) Compute $\lim_{x\to 2^+} f(x)$:

(c) For what value of k is this function continuous everywhere?

- 5. (15 points) Consider the curve $x^2 + y^2 = y \cos x$.
- (a) Compute $\frac{dy}{dx}$.

(b) Give an equation for the tangent line to the curve at the point (0,1).

6. (18 points) A streetlight is mounted at the top of a 15-ft tall pole. A man 6 ft tall walks away from the pole with the speed of 5 ft/s along a straight path. How fast is the tip of his shadow moving when he is 40 ft away from the pole?

- 7. (15 points) Let $f(x) = \sin x$.
- (a) Find the linearization of f(x) at $x = \pi = 3.1415926...$

(b) Use your answer to part (a) to approximate $\sin(3.1)$.

(c) Is your approximation in (b) an overestimate or an underestimate? Explain.

Part B

8. (12 points) Compute the following limits. Justify any use of L'Hospital's rule.

(a)
$$\lim_{x \to 1} \left(\frac{x}{x-1} - \frac{1}{\ln x} \right)$$

(b) $\lim_{x \to 0^+} x^x$

9. (12 points) Find the area of the largest rectangle which has two vertices on the x-axis and two vertices on the graph of the function $y = 8 - x^2$ with $-\sqrt{8} \le x \le \sqrt{8}$.

10. (18 points) Consider the following function f(x), with first and second derivative also given:

$$f(x) = \frac{\ln x}{x^2}$$
, $f'(x) = \frac{1 - 2\ln x}{x^3}$, $f''(x) = \frac{6\ln x - 5}{x^4}$.

(a) Find the domain of f(x).

(b) List all x- and y-intercepts of f(x).

(c) List all vertical asymptotes of f(x) or explain why none exist.

(d)	List	t all h	orizontal	asy	mpt	otes	of $f(:$	x)	or	expl	ain	why	none
(e)	On	what	intervals	is .	f(x)	incre	easing	g?	dec	reas	ingʻ	?	
(f)	On	what	intervals	is .	f(x)	conc	eave u	ıp?	со	ncav	ze d	own	?

exist.

11. (8 points) Sketch the graph of a function g(x) that satisfies the following properties:

• x-intercepts: -3, 2, 5

•y-intercept: -2

•vertical asymptote: x = 3

•horizontal asymptote: y = 3

•increasing on $(-\infty, -6) \cup (-1, 3)$

•decreasing on $(-6, -1) \cup (3, \infty)$

•concave up on $(-\infty, -7) \cup (-3, 3) \cup (3, 8)$

•concave down on $(-7, -3) \cup (8, \infty)$

12. (15 points)

(a) Find

$$\frac{d}{dx} \int_{x}^{e^{x}} \frac{t^{2} + 1}{\sqrt{t+1}} dt$$

(b) Estimate the area under the graph $y=\sqrt{x}$ between x=0 and x=8 by using a Riemann sum with four intervals of equal width and right endpoints.

(c) Compute the integral $\int_{-3}^{0} \left(1 + \sqrt{9 - x^2}\right) dx$ by interpreting it as an area.

13. (20 points) Compute the following integrals.

(a)
$$\int \left(4x^3 - \frac{1}{\sqrt{x}} + \frac{1}{1+x^2}\right) dx$$

(b)
$$\int_{-2\pi}^{-\pi} \left(e^{-2x} + \frac{1}{x} - \cos(x) \right) dx$$

(c)
$$\int x^2 \sqrt{x^3 + 1} \ dx$$

(d)
$$\int_0^{\pi/4} \cos^3(x) \sin(x) \ dx$$

- 14. (15 points) Aaron is driving his car along a straight path. After t seconds, the velocity of the car is given by $v(t) = 2t^2 10t + 8$ ft/s.
- (a) Find the acceleration of the car at t=2 seconds.

(b) Find the **displacement** of the car over the interval $0 \le t \le 3$.

(c) Find the **total distance traveled** over the interval $0 \le t \le 3$.