1. (12 points) Answer each part below and fully justify your answers. Put your final answer in the answer box:
(a) If $|\cos \phi|=2 / 3$, and $\pi / 2<\phi<\pi$, then compute all six trig functions of ϕ.

(b) Find all $x, 0 \leq x \leq 2 \pi$, such that $\sin 2 x=\cos x$.

$$
\begin{aligned}
& \sin (2 x)=\cos x \Rightarrow 2 \sin x \cos x=\cos x \\
& \Rightarrow(2 \sin x-1) \cos x=0 \\
& \Rightarrow \sin x=1 / 2 \quad 0 R \cos x=0 \\
& \Rightarrow x=\frac{\pi}{6}, \frac{5 \pi}{6} \quad \Rightarrow x=\frac{\pi}{2}, \frac{3 \pi}{2} \\
& x=\frac{\pi}{6}, 5 \pi / 6, \frac{\pi}{2}, 3 \pi / 2
\end{aligned}
$$

2. (12 points) Let $f(x)=\ln \left(e^{x}-3\right)$. Answer each part below, show your work, and put the final answer in the answer box.
(a) Find an explicit formula for $f^{-1}(x)$.

$$
\begin{aligned}
\rightarrow y=\ln \left(e^{x}-3\right) & \Rightarrow e^{y}=e^{x}-3 \\
& \Rightarrow e^{y}+3=e^{x}
\end{aligned}
$$

$$
\Rightarrow \quad \ln \left(e^{y}+3\right)=x
$$

So, $f^{-1}(x)=\ln \left(e^{x}+3\right)$
(b) Find the domain and range of f and f^{-1} with brief justification.

$$
\begin{aligned}
\rightarrow x \text { in } \operatorname{dom}(f) & \Leftrightarrow e^{x}-3>0 \\
& \Leftrightarrow e^{x}>3 \\
& \Leftrightarrow x>\ln (3)
\end{aligned}
$$

On $x>\ln (3)$, range of $e^{x}-3$
is $(0, \infty)$, hence range of

$$
\begin{gathered}
f(x)=\ln \left(e^{x}-3\right) \text { is }(-\infty, \infty) . \\
\text { So, } \operatorname{dom}(f)=(\ln (3), \infty) \\
\text { range }(f)=(-\infty, \infty) .
\end{gathered}
$$

Then, $\operatorname{dom}\left(f^{-1}\right)=\operatorname{range}(f)=(-\infty, \infty)$

$$
\operatorname{range}\left(f^{-1}\right)=\operatorname{dom}(f)=(\ln (3), \infty)
$$

3. (24 points) Evaluate the following limits using limit laws and properties of limits to justify your answers. If they do not exist, explain why not. If the limit is $+\infty$ or $-\infty$, state which it is. Put your final answer in the answer box.
(a) $\lim _{x \rightarrow 1^{+}} \frac{1-\sqrt{x}}{x-x^{2}} \sim \circ / 0$

$$
\begin{aligned}
& =\lim _{x \rightarrow 1^{+}} \frac{1-\sqrt{x}}{x(1-x)} \cdot \frac{1+\sqrt{x}}{1+\sqrt{x}} \\
& =\lim _{x \rightarrow 1^{+}} \frac{1-x}{x(1-x)(1+\sqrt{x})} \\
& =\lim _{x \rightarrow 1^{+}} \frac{1}{x(1+\sqrt{x})}=\frac{1}{2}
\end{aligned}
$$

(b) $\lim _{\substack{x \rightarrow-\infty}} \frac{2}{(x-5)^{3}} \sim \frac{2}{0} \rightarrow+\infty$ or $-\infty$
but which one?
For $x \rightarrow 5^{-}, x<5 \Rightarrow(x-5)^{3}<0$

$$
\Rightarrow \frac{2}{(x-5)^{3}}<0 .
$$

There fore, $\lim _{x \rightarrow 5^{-}} \frac{2}{(x-5)^{3}}=-\infty$
(c) $\lim _{x \rightarrow 0} \frac{|x|}{x^{2}}+\frac{1-2 x^{2}}{x} \cdot=\lim _{x \rightarrow 0^{-}}\left[\frac{(-x)}{x^{2}}+\frac{1-2 x^{2}}{x}\right]$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0^{-}}\left(-\frac{1}{x}+\frac{1}{x}-2 x\right) \\
& =\ln _{-}(-2 x)
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0^{-}}(-2 x) \\
& =0
\end{aligned}
$$

(d) $\lim _{x \rightarrow \infty} \sin \left(\frac{1}{x}\right) \cos (x)$

Since $\frac{1}{x} \rightarrow 0$ as $x \rightarrow \infty$,

$$
\begin{aligned}
& \sin \left(\frac{1}{x}\right) \rightarrow \sin (0)=0 \\
- & 1 \leq \cos x \leq 1 \\
\Rightarrow & -\sin \left(\frac{1}{x}\right) \leq \sin \left(\frac{1}{x}\right) \cos (x) \leq \sin \left(\frac{1}{x}\right)
\end{aligned}
$$

for x Large, hence

$$
\lim _{x \rightarrow \infty} \sin \left(\frac{1}{x}\right) \cos x=0 \quad b_{y}
$$

Squeeze thin since

$$
\lim _{x \rightarrow \infty} \sin \left(\frac{1}{x}\right)=\lim _{x \rightarrow \infty}-\sin \left(\frac{1}{x}\right)=0
$$

4. (12 points) Consider the following function:

$$
f(x)= \begin{cases}-5-x & \text { if } x<-1 \\ A & \text { if } x=-1 \\ x^{2}+2 x-3 & \text { if }-1<x<0 \\ B & \text { if } x=0 \\ e^{x}+1 & \text { if } x>0\end{cases}
$$

(a) Compute each of the following or state why they do not exist.

$$
\begin{aligned}
& \lim _{x \rightarrow-1^{-}} f(x)=-5-(-1) \\
& \lim _{x \rightarrow-1^{+}} f(x)=(-1)^{2}+2(-1)-3 \quad \lim _{x \rightarrow-1} f(x)=-4 \\
& =-4 \\
& \lim _{x \rightarrow 0^{-}} f(x)=0^{2}+\partial(0)-3 \quad \lim _{x \rightarrow 0^{+}} f(x)=e^{0}+1 \quad \lim _{x \rightarrow 0} f(x)=\text { DeE } \\
& =-3 \\
& =2 \\
& \text { since } \lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x) \text {. }
\end{aligned}
$$

(b) Find a value A such that $f(x)$ is continuous at $x=-1$ or explain why no such value exists. Similarly, find a value B such that $f(x)$ is continuous at $x=0$ or explain why no such value exists. Fully justify your answer.

$$
\rightarrow \text { If } A=-4 \text {, then } f(-1)=-4=\lim _{x \rightarrow-1} f(x) \text {, }
$$

which means f is continuous at $x=-1$.
There is no value of B that makes f continuo at
does not exist.
5. (16 points) Consider the following function:

$$
f(x)=\frac{(x+3) \sqrt{4 x^{2}+1}}{x^{2}+x-6} .
$$

(a) Determine whether or not the graph $y=f(x)$ has any vertical asymptotes. If so, state what they are. Justify your answer using limits!

$$
\begin{aligned}
& f(x)=\frac{(x+3) \sqrt{4^{2}+1}}{(x+3)(x-2)}=\frac{\sqrt{4 x^{2}+1}}{x-2} \\
& \text { hence } \lim _{x \rightarrow-3} f(x) \text { is finite (so } x=-3 \\
& \lim _{x \rightarrow 2^{+}} \frac{\sqrt{4 x^{2}+1}}{x-2}=+\infty \\
& \lim _{x \rightarrow 2^{-}} \frac{\sqrt{4 x^{2}+1}}{x-2}=-\infty \text {, hence } \\
& f \text { has a V.A. at } x=2 .
\end{aligned}
$$

(b) Again referring to

$$
f(x)=\frac{(x+3) \sqrt{4 x^{2}+1}}{x^{2}+x-6}
$$

determine whether or not the graph $y=f(x)$ has any horizontal asymptotes. If so, state what they are. Justify your answer using limits!

$$
\lim _{x \rightarrow \infty} f=\lim _{x \rightarrow \infty} \frac{\frac{\sqrt{4 x^{2}+1}}{x-2} \sim \frac{\infty}{\infty}}{\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}} \sqrt{4+y^{2}}}{x(1-\sqrt[2]{x})}}
$$

$$
\begin{aligned}
&-x \rightarrow \infty \\
&=\lim _{x \rightarrow \infty} \frac{|x| \sqrt{4+1-x^{2}}}{x(1-2 / x)} \\
& \Rightarrow x>0 \\
& \Rightarrow|x|=x \rightarrow x_{x \rightarrow \infty} \frac{x \sqrt{4+x^{2}}}{x(1-2 / x)} \\
&=\lim _{x \rightarrow \infty} \frac{\sqrt{4+1 / x^{20}}}{1-2 / x^{0}} \\
&=2
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\substack{x \rightarrow-\infty) \\
\Rightarrow x(0) \\
\Rightarrow|x|=-x} & =\lim _{x \rightarrow-\infty} \frac{-x \sqrt{4+y x^{2}}}{x(1-2 / x)} \\
& =\lim _{x \rightarrow-\infty} \frac{-\sqrt{4+\frac{1 / x^{20}}{}}}{1-2 / x^{0}} \\
& =-2
\end{aligned}
$$

Therefore, f has H.A.'s at $y=-2$ and $y=2$.
6. (12 points) Let $y=f(x)$ give the distance between x and the nearest integer, graphed below.

(a) Graph the derivative $y=f^{\prime}(x)$ on the axes below.

(b) Give all real values of x in $(-\infty, \infty)$ at which f is not differentiable. Only your answer will be considered, no justification is required.

$$
\begin{aligned}
& f^{\prime}(x) \text { does not exist at } \\
& x=\ldots,-2,-3 / 2,-1,-1 / 2,0,1 / 2,1,3 / 2, \ldots n
\end{aligned}
$$

7. (12 points) Answer each part below.
(a) Write the limit definition of the derivative $f^{\prime}(a)$ of a function f at a.

$$
\rightarrow f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

OR

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

(b) Now let $f(x)=x^{2}$. Use the limit definition of the derivative to find $f^{\prime}(2)$.

$$
\begin{aligned}
f^{\prime}(2) & =\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(2+h)^{2}-2^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{4+4 h+h^{2}-4}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(4+h)}{h} \\
& =\lim _{h \rightarrow 0}(4+h) \\
& =4
\end{aligned}
$$

Note: no points awarded for simply using power rule.

