Math 161

Midterm 1 February 25, 2016

Name:		
Student ID Number:		
Circle your instructor:	Bridy (MW 2:00)	Demiroglu (MW 4:50)
Academic honesty stater	nent:	
With my signature, I affirm	that I will not give or a	receive any unauthorized help on this
exam, and that all work will	be my own.	

Signature: ____

Date: _

- Justify your answers.
- No calculators are allowed on this exam, but you are allowed one sheet of paper with writing on both sides.
- You do not need to simplify arithmetic expressions like 5^8 or $\frac{24}{120} + \frac{14}{36}$, but you do need to evaluate expressions like $\sin^{-1}(1)$, $\sin(\pi)$, or $e^{\ln 2}$.

QUESTION	VALUE	SCORE
1	15	
2	15	
3	15	
4	20	
5	10	
6	15	
7	10	
TOTAL	100	

(a) Let
$$f(x) = \sin(3x)$$
 and $g(x) = \frac{x}{2}$. Compute $(f \circ g)(\pi)$ and $(g \circ f)(\pi)$.

(b) Let $f(x) = 5^{2x-3}$. Find a formula for $f^{-1}(x)$.

(c) Solve $2^{2x^2+1} = 8$.

(a) Find all solutions to the inequality $|4x - 6| \ge 14$. Write your answer as an interval or as a union of intervals.

(b) Write $\tan(\sin^{-1}(2x))$ in terms of x in a way that has no trig or inverse trig functions.

(c) Solve $\ln(x+2) + \ln(x) - \ln(3) = 0$.

(a) Use the definition of the derivative to compute f'(2), where

$$f(x) = \frac{x}{x+3}.$$

(b) Suppose you know that f'(-2) = 3 (you don't have to show this). Write an equation for the tangent line to y = f(x) at the point where x = -2.

4. (20 points) Compute the following limits. If the limit does not exist, write "DNE." Be sure to distinguish between limits that are ∞ or $-\infty$ instead of "DNE." You may only use methods discussed in this class so far.

(a)
$$\lim_{x \to 3^-} \frac{2x^2 - 18}{x^2 - 6x + 9}$$

(b)
$$\lim_{x \to 2} \frac{x^3 - 4x}{x^2 + 5x - 14}$$

(c)
$$\lim_{x \to 3} \frac{2x-6}{|x-3|}$$

(d)
$$\lim_{x \to \infty} \sqrt{4x^2 + 5x} - 2x$$

5. (10 points) Find all vertical and horizontal asymptotes of $f(x) = \frac{\sqrt{9x^2} + x}{x}$.

(a) State the definition of continuity of the function f(x) at the point a.

(b) Let the following piecewise function be defined for some numbers a, b, and c.

$$f(x) = \begin{cases} x^2 + 3 & : x < -2 \\ a & : x = -2 \\ bx + c & : -2 < x < 1 \\ 2x^3 - 1 & : x \ge 1 \end{cases}$$

Find the values of a, b, c that make f(x) continuous everywhere. (Justify your answer.)

- 7. (10 points) Suppose you have a function f(x) and you know that $f'(x) = \frac{x^2 + 3x}{x^2 2x + 1}$.
- (a) Find all values of x where the tangent line to the graph of y = f(x) is perpendicular to the line y + x + 1 = 0.

(b) Is f(x) continuous at x = 2? Explain your answer.