Math 161

Midterm 1

February 25, 2016

Name: \qquad

Student ID Number:

Circle your instructor: Bridy (MW 2:00) Demiroglu (MW 4:50)

Academic honesty statement:

With my signature, I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.

Signature: \qquad Date: \qquad

- Justify your answers.
- No calculators are allowed on this exam, but you are allowed one sheet of paper with writing on both sides.
- You do not need to simplify arithmetic expressions like 5^{8} or $\frac{24}{120}+\frac{14}{36}$, but you do need to evaluate expressions like $\sin ^{-1}(1), \sin (\pi)$, or $e^{\ln 2}$.

QUESTION	VALUE	SCORE
1	15	
2	15	
3	15	
4	20	
5	10	
6	15	
7	10	
TOTAL	100	

1. (15 points)
(a) Let $f(x)=\sin (3 x)$ and $g(x)=\frac{x}{2}$. Compute $(f \circ g)(\pi)$ and $(g \circ f)(\pi)$.
(b) Let $f(x)=5^{2 x-3}$. Find a formula for $f^{-1}(x)$.
(c) Solve $2^{2 x^{2}+1}=8$.

2. (15 points)

(a) Find all solutions to the inequality $|4 x-6| \geq 14$. Write your answer as an interval or as a union of intervals.
(b) Write $\tan \left(\sin ^{-1}(2 x)\right)$ in terms of x in a way that has no trig or inverse trig functions.
(c) Solve $\ln (x+2)+\ln (x)-\ln (3)=0$.

3. (15 points)

(a) Use the definition of the derivative to compute $f^{\prime}(2)$, where

$$
f(x)=\frac{x}{x+3} .
$$

(b) Suppose you know that $f^{\prime}(-2)=3$ (you don't have to show this). Write an equation for the tangent line to $y=f(x)$ at the point where $x=-2$.
4. (20 points) Compute the following limits. If the limit does not exist, write "DNE." Be sure to distinguish between limits that are ∞ or $-\infty$ instead of "DNE." You may only use methods discussed in this class so far.
(a) $\lim _{x \rightarrow 3^{-}} \frac{2 x^{2}-18}{x^{2}-6 x+9}$
(b) $\lim _{x \rightarrow 2} \frac{x^{3}-4 x}{x^{2}+5 x-14}$
(c) $\lim _{x \rightarrow 3} \frac{2 x-6}{|x-3|}$
(d) $\lim _{x \rightarrow \infty} \sqrt{4 x^{2}+5 x}-2 x$
5. (10 points) Find all vertical and horizontal asymptotes of $f(x)=\frac{\sqrt{9 x^{2}}+x}{x}$.

6. (15 points)

(a) State the definition of continuity of the function $f(x)$ at the point a.
(b) Let the following piecewise function be defined for some numbers a, b, and c.

$$
f(x)=\left\{\begin{array}{cl}
x^{2}+3 & : x<-2 \\
a & : x=-2 \\
b x+c & :-2<x<1 \\
2 x^{3}-1 & : x \geq 1
\end{array}\right.
$$

Find the values of a, b, c that make $f(x)$ continuous everywhere. (Justify your answer.)
7. (10 points) Suppose you have a function $f(x)$ and you know that $f^{\prime}(x)=\frac{x^{2}+3 x}{x^{2}-2 x+1}$.
(a) Find all values of x where the tangent line to the graph of $y=f(x)$ is perpendicular to the line $y+x+1=0$.
(b) Is $f(x)$ continuous at $x=2$? Explain your answer.

