MTH 161

Midterm 1

Thursday, February 22, 2018

NAME (please print legibly): \qquad
Your University ID Number:

Circle your instructor and class time:

Lorman (MW 2:00) Peng (MW 4:50)
Please read the following instructions very carefully:

- You have $\mathbf{7 5}$ minutes to complete this exam.
- Only pens/pencils are allowed. The presence of notes, calculators, cell phones, iPods and other electronic devices at this exam is strictly forbidden. The last page of this exam is a formula sheet that may or may not be useful.
- Show your work and justify your answers. If you need extra space, use the back of the previous page and clearly indicate that you have done so. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given. Clearly circle or label your final answers.
- Sign the following academic honesty statement: I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.

Signature:

QUESTION	VALUE	SCORE
1	20	
2	15	
3	25	
4	15	
5	10	
6	15	
TOTAL	100	

1. (20 points)
(a) Find all solutions to the equation

$$
2^{1-x^{2}}=1
$$

(b) Find all solutions to the equation

$$
|x|=|x+1| .
$$

(c) Find the solution set of the following inequality:

$$
|x-3|>4
$$

(d) Find the value of $\cos \left(\sin ^{-1}\left(\frac{2}{5}\right)\right)$.
(e) Find all solutions to the following equation in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$:

$$
\cos (2 x)=-\frac{1}{2}
$$

2. (15 points) Let

$$
f(x)=\sqrt{\frac{1+5 x}{3-x}}
$$

(a) Find the domain of $f(x)$.
(b) Find $f^{-1}(x)$.
3. (25 points) Find each of the following limits or show they do not exist. (If the limit approaches ∞ or $-\infty$, specify which one.)
(a)

$$
\lim _{x \rightarrow 1} \ln x
$$

(b)

$$
\lim _{t \rightarrow 4} \frac{4-t}{2-\sqrt{t}}
$$

(c)

$$
\lim _{x \rightarrow 1^{-}} \frac{3 x-2}{1-|x|}
$$

(d)

$$
\lim _{x \rightarrow 1^{-}} \frac{3 x-2-|x-2|}{1-|x|}
$$

(e)

$$
\lim _{h \rightarrow 0} \frac{\frac{1}{(h+3)^{2}}-\frac{1}{9}}{h}
$$

4. (15 points)

(a) State (precisely) what it means for a function $f(x)$ to be continous at a number a.
(b) Let

$$
f(x)= \begin{cases}2 \sin \left(\frac{\pi x}{4}\right) & x \leq-1 \\ |x| & -1<x<1 \\ e^{x-1} & x \geq 1\end{cases}
$$

Find the number(s) a at which f is NOT continuous and give the reason(s).
5. (10 points) Consider the equation

$$
\frac{x^{5}+3 x+7}{x^{3}+x}=0
$$

(a) Use the Intermediate Value Theorem to show that there is a solution to this equation between $a=-2$ and $b=-1$. (Showing your work means checking that the conditions necessary to apply the Intermediate Value Theorem apply.)
(b) Does the Intermediate Value Theorem apply to show that the equation has a solution between $a=-1$ and $b=2$? Explain why or why not.
6. (15 points) Consider the function

$$
f(x)=\frac{1+x}{\sqrt{x+x^{2}}}
$$

Its domain is $(-\infty,-1) \cup(0, \infty)$.
[Possibly useful fact: if $x \neq 0$, then $\sqrt{x+x^{2}}=\sqrt{x^{2}\left(1+\frac{1}{x}\right)}$ and $1+x=x\left(1+\frac{1}{x}\right)$.]
(a) Find all vertical asymptotes of the curve $y=f(x)$.
(b) Find all horizontal asymptotes of the curve $y=f(x)$.

Formula Sheet

Midterm 1

$$
\begin{aligned}
\sin (x+y) & =\sin x \cos y+\cos x \sin y \\
\sin (x-y) & =\sin x \cos y-\cos x \sin y \\
\cos (x+y) & =\cos x \cos y-\sin x \sin y \\
\cos (x-y) & =\cos x \cos y+\sin x \sin y
\end{aligned}
$$

$$
\begin{aligned}
\sin 2 x & =2 \sin x \cos x \\
\cos 2 x & =\cos ^{2} x-\sin ^{2} x \\
& =2 \cos ^{2} x-1 \\
& =1-2 \sin ^{2} x
\end{aligned}
$$

$$
\begin{aligned}
\cos ^{2} x & =\frac{1+\cos 2 x}{2} \\
\sin ^{2} x & =\frac{1-\cos 2 x}{2}
\end{aligned}
$$

