MTH 161

Final Exam
Sunday, December 17, 2017

Last Name (Family Name)
First Name (Given Name)
First Name (Given Name)
Student ID Number: \qquad
Circle your instructor and class time:
Hambrook (MW 10:25) Hambrook (MW 2:00)
Lorman (TuTh 9:40) Lubkin (MW 9:00) Xi (TuTh 3:25)
Please read the following instructions very carefully:

- Only pens and pencils are allowed. The presence of notes, calculators, cell phones, iPods and other electronic devices at this exam is strictly forbidden.
- This exam has 15 problems and 24 pages. Check that your exam is complete when you start.
- Show your work. You may not receive full credit if insufficient justification is given.
- Clearly circle or label your final answers.
- If you need extra space, use the back of the opposite page, and write that you are doing so.
- Sign the following academic honesty statement: I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.

Signature:

Part A		
QUESTION	VALUE	SCORE
1	20	
2	16	
3	16	
4	12	
5	14	
6	14	
7	8	
TOTAL	100	

Part B		
QUESTION	VALUE	SCORE
8	8	
9	12	
10	8	
11	15	
12	20	
13	10	
14	12	
15	15	
TOTAL	100	

Part A

1. (20 points)
(a) If $f(x)=\frac{x+1}{2 x+1}$, find a formula for $f^{-1}(x)$.
(b) Solve $\ln x+\ln (x-1)=\ln 6$.
(c) Find the exact value of $\tan \left(\sin ^{-1}\left(\frac{-1}{9}\right)\right)$.
(d) Solve $|x|+|2 x-1| \geq 7$.
2. (16 points) Compute the derivative (with respect to x) of each of the following functions.
(a) $\frac{x^{3}}{\cos \left(x^{3}\right)}$
(b) $e^{\sqrt{\ln x}}$
(c) $\sqrt[3]{1+x^{2}}+\frac{1}{\sqrt{1+x^{3}}}$
(d) $(\ln x)^{\ln x}$
3. (16 points) Evaluate the following limits.
(a) $\lim _{x \rightarrow 1^{+}} \frac{x^{2}-9}{x^{2}+2 x-3}$
(b) $\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{6}+1}}{(2 x+1)^{3}}$
(c) $\lim _{x \rightarrow 0} \frac{\sqrt{a x+b^{2}}-b}{x}$ (where a and b are positive constants)
(d) $\lim _{x \rightarrow 0} \frac{|2 x-1|-|2 x+1|}{x}$
4. (12 points) Consider the curve $y \sin 2 x=x \cos 2 y$.
(a) Find $\frac{d y}{d x}$ at the point $(\pi / 2, \pi / 4)$.
(b) Find an equation for the tangent line to the curve at the point $(\pi / 2, \pi / 4)$.
5. (14 points) A plane is climbing at an angle of 30° while flying at a constant speed of $300 \mathrm{~km} / \mathrm{h}$. It passes over a ground radar station at an altitude of 7 km . At what rate is the distance from the plane to the radar station increasing 1 minute later?
6. (14 points) The height of the foam in a glass of (root) beer decreases at a rate proportional to the current height. The glass is filled with (root) beer so that the top 5 cm is foam. After 60 seconds, only 2 cm of foam remains.
(a) Find an expression for the height of the foam t seconds after the (root) beer is poured.
(b) At what time is the height of the foam 4 cm ?
(c) How long must we wait until the foam completely disappears?
7. (8 points) For each statement below, circle T (true) if the statement is always true. Otherwise, circle F (false)
(a) T or F If f is continuous on (a, b) and $f(a)<0<f(b)$, then there is a number c in (a, b) such that $f(c)=0$.
(b) $\mathrm{T} \quad$ or $\quad \mathrm{F} \quad$ If $f^{\prime}(0)=5$, then $\lim _{h \rightarrow 0} \frac{f(h)}{h}=5$.
(c) $\mathrm{T} \quad$ or $\quad \mathrm{F} \quad$ If $f(1)=g(1)$ and $f^{\prime}(x) \leq g^{\prime}(x)$ for all x in $[0,1]$, then $f(0) \geq g(0)$.
(d) T or $\mathrm{F} \quad f(x)=x|x|$ is differentiable at every real number x.

Part B

8. (8 points) For each statement below, circle T (true) if the statement is always true. Otherwise, circle F (false)
(a) T or F If f is continuous, then $\int_{0}^{5} f(x) d x \leq \int_{0}^{5}|f(x)| d x$
(b) $\mathrm{T} \quad$ or F If f is continuous, then $\int_{0}^{5} f(x) d x \leq \int_{0}^{5}(f(x))^{2} d x$
(c) T or F If f is continuous, then $\int_{0}^{5} f(x) d x \leq \int_{0}^{5}(f(x)+2) d x$
(d) T or F If f is continuous, then $\int_{0}^{5} f(x) d x \leq \int_{0}^{10} f(x) d x$

9. (12 points)

(a) Let $f(x)$ be an increasing function. If a Riemann sum with right endpoints is used to approximate $\int_{0}^{1} f(x) d x$, must the Riemann sum be larger than the integral? Justify your answer with an appropriate sketch.
(b) Let $f(x)$ be an increasing function and let $L(x)=f^{\prime}(1)(x-1)+f(1)$ be the linear approximation function of $f(x)$ at 1 . Must $L(1.01)$ be larger than $f(1.01)$? Justify your answer with an appropriate sketch.
10. (8 points) Evaluate the following limits.
(a) $\lim _{x \rightarrow 0} \frac{\sqrt{1+2 x}-\sqrt{1-4 x}}{x}$
(b) $\lim _{x \rightarrow 0^{+}}(\tan 2 x)^{x}$
11. (15 points) Evaluate the following integrals.
(a) $\int_{1}^{e^{2}} \frac{\sqrt{\ln x+1}}{x} d x$
(b) $\int \frac{x^{5}}{\sqrt{x^{3}+1}} d x$
(c) $\int_{0}^{3}\left|e^{x}-2\right| d x$
12. (20 points) Consider the function f with its first and second derivatives:

$$
f(x)=\frac{1}{\sqrt[3]{x^{3}+1}}, \quad f^{\prime}(x)=\frac{-x^{2}}{\left(\sqrt[3]{x^{3}+1}\right)^{4}}, \quad f^{\prime \prime}(x)=\frac{2 x\left(x^{3}-1\right)}{\left(\sqrt[3]{x^{3}+1}\right)^{7}}
$$

(a) Find the domain of $f(x)$.
(b) List all x-intercepts and y-intercepts of $f(x)$.

Reminder: $f(x)=\frac{1}{\sqrt[3]{x^{3}+1}}, \quad f^{\prime}(x)=\frac{-x^{2}}{\left(\sqrt[3]{x^{3}+1}\right)^{4}}, \quad f^{\prime \prime}(x)=\frac{2 x\left(x^{3}-1\right)}{\left(\sqrt[3]{x^{3}+1}\right)^{7}}$.
(c) Compute $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ for any vertical asymptotes $x=a$.
(d) Compute $\lim _{x \rightarrow-\infty} f(x)$ and $\lim _{x \rightarrow \infty} f(x)$. List all horizontal asymptotes of $f(x)$.

Reminder: $f(x)=\frac{1}{\sqrt[3]{x^{3}+1}}, \quad f^{\prime}(x)=\frac{-x^{2}}{\left(\sqrt[3]{x^{3}+1}\right)^{4}}, \quad f^{\prime \prime}(x)=\frac{2 x\left(x^{3}-1\right)}{\left(\sqrt[3]{x^{3}+1}\right)^{7}}$.
(e) On what intervals is $f(x)$ increasing? decreasing?
(f) On what intervals is $f(x)$ concave up? concave down?
13. (10 points) Sketch the graph of a function $f(x)$ that satisfies the following properties:

- x-intercepts: $-3,3$
- y-intercepts: 2
- vertical asymptotes: $x=-5$ and $x=5$
- horizontal asymptotes: $y=-1$ and $y=1$
- $f^{\prime}(x)>0$ on $(-\infty,-5) \cup(-5,0) \cup(5, \infty)$
- $f^{\prime}(x)<0$ on $(0,5)$
- $f^{\prime \prime}(x)>0$ on $(-\infty,-5)$
- $f^{\prime \prime}(x)<0$ on $(-5,5) \cup(5, \infty)$

14. (12 points)

(a) A particle is moving with the given velocity and position data. Find the position function $s(t)$ of the particle.

$$
v(t)=10 \sin t+3 \cos t, \quad s(\pi / 4)=12
$$

(b) Let $f(x)=\int_{1}^{x^{2}}(t-4) e^{-t^{2}} d t$ for all real numbers x. On what intervals is $f(x)$ an increasing function?
15. (15 points) A woman at a point A on the shore of a circular lake with radius 2 miles wants to arrive at the point C diametrically opposite A on the other side of the lake in the shortest possible time (see the figure). She can walk at the rate of 4 miles $/ \mathrm{h}$ and row a boat at 2 miles $/$ h. How should she proceed? Justify your answer. (It may help to know that $\sqrt{3}=1.73 \ldots$)

Formula Sheet

You may tear this page off.

$$
\begin{aligned}
\sin (x+y) & =\sin x \cos y+\cos x \sin y \\
\sin (x-y) & =\sin x \cos y-\cos x \sin y \\
\cos (x+y) & =\cos x \cos y-\sin x \sin y \\
\cos (x-y) & =\cos x \cos y+\sin x \sin y \\
\sin 2 x & =2 \sin x \cos x \\
\cos 2 x & =\cos ^{2} x-\sin ^{2} x \\
& =2 \cos ^{2} x-1 \\
& =1-2 \sin ^{2} x \\
\cos ^{2} x & =\frac{1+\cos 2 x}{2} \\
\sin ^{2} x & =\frac{1-\cos 2 x}{2}
\end{aligned}
$$

Scratch Paper. You may tear this page off. Nothing you write on this page will be graded.

