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Part A

1. (20 points)

(a) If f(x) =
x+ 1

2x+ 1
, find a formula for f−1(x).

(b) Solve lnx+ ln(x− 1) = ln 6.
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(c) Find the exact value of tan
(
sin−1

(−1
9

))
.

(d) Solve |x|+ |2x− 1| ≥ 7.

3



2. (16 points) Compute the derivative (with respect to x) of each of the following func-

tions.

(a)
x3

cos(x3)

(b) e
√
lnx
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(c) 3
√

1 + x2 +
1√

1 + x3

(d) (lnx)lnx
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3. (16 points) Evaluate the following limits.

(a) lim
x→1+

x2 − 9

x2 + 2x− 3

(b) lim
x→−∞

√
x6 + 1

(2x+ 1)3
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(c) lim
x→0

√
ax+ b2 − b

x
(where a and b are positive constants)

(d) lim
x→0

|2x− 1| − |2x+ 1|
x
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4. (12 points) Consider the curve y sin 2x = x cos 2y.

(a) Find
dy

dx
at the point (π/2, π/4).

(b) Find an equation for the tangent line to the curve at the point (π/2, π/4).
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5. (14 points) A plane is climbing at an angle of 30◦ while flying at a constant speed of

300 km/h. It passes over a ground radar station at an altitude of 7 km. At what rate is the

distance from the plane to the radar station increasing 1 minute later?
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6. (14 points) The height of the foam in a glass of (root) beer decreases at a rate

proportional to the current height. The glass is filled with (root) beer so that the top 5 cm

is foam. After 60 seconds, only 2 cm of foam remains.

(a) Find an expression for the height of the foam t seconds after the (root) beer is poured.

(b) At what time is the height of the foam 4 cm?

(c) How long must we wait until the foam completely disappears?
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7. (8 points) For each statement below, circle T (true) if the statement is always true.

Otherwise, circle F (false)

(a) T or F If f is continuous on (a, b) and f(a) < 0 < f(b), then there is a number c

in (a, b) such that f(c) = 0.

(b) T or F If f ′(0) = 5, then lim
h→0

f(h)

h
= 5.

(c) T or F If f(1) = g(1) and f ′(x) ≤ g′(x) for all x in [0, 1], then f(0) ≥ g(0).

(d) T or F f(x) = x|x| is differentiable at every real number x.
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Part B

8. (8 points) For each statement below, circle T (true) if the statement is always true.

Otherwise, circle F (false)

(a) T or F If f is continuous, then

∫ 5

0

f(x)dx ≤
∫ 5

0

|f(x)|dx

(b) T or F If f is continuous, then

∫ 5

0

f(x)dx ≤
∫ 5

0

(f(x))2dx

(c) T or F If f is continuous, then

∫ 5

0

f(x)dx ≤
∫ 5

0

(f(x) + 2)dx

(d) T or F If f is continuous, then

∫ 5

0

f(x)dx ≤
∫ 10

0

f(x)dx
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9. (12 points)

(a) Let f(x) be an increasing function. If a Riemann sum with right endpoints is used to

approximate
∫ 1

0
f(x)dx, must the Riemann sum be larger than the integral? Justify your

answer with an appropriate sketch.

(b) Let f(x) be an increasing function and let L(x) = f ′(1)(x − 1) + f(1) be the linear

approximation function of f(x) at 1. Must L(1.01) be larger than f(1.01)? Justify your

answer with an appropriate sketch.
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10. (8 points) Evaluate the following limits.

(a) lim
x→0

√
1 + 2x−

√
1− 4x

x

(b) lim
x→0+

(tan 2x)x

14



11. (15 points) Evaluate the following integrals.

(a)

∫ e2

1

√
lnx+ 1

x
dx

(b)

∫
x5√
x3 + 1

dx
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(c)

∫ 3

0

|ex − 2|dx
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12. (20 points) Consider the function f with its first and second derivatives:

f(x) =
1

3
√
x3 + 1

, f ′(x) =
−x2(

3
√
x3 + 1

)4 , f ′′(x) =
2x(x3 − 1)(
3
√
x3 + 1

)7 .

(a) Find the domain of f(x).

(b) List all x-intercepts and y-intercepts of f(x).
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Reminder: f(x) =
1

3
√
x3 + 1

, f ′(x) =
−x2(

3
√
x3 + 1

)4 , f ′′(x) =
2x(x3 − 1)(
3
√
x3 + 1

)7 .
(c) Compute lim

x→a−
f(x) and lim

x→a+
f(x) for any vertical asymptotes x = a.

(d) Compute lim
x→−∞

f(x) and lim
x→∞

f(x). List all horizontal asymptotes of f(x).
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Reminder: f(x) =
1

3
√
x3 + 1

, f ′(x) =
−x2(

3
√
x3 + 1

)4 , f ′′(x) =
2x(x3 − 1)(
3
√
x3 + 1

)7 .
(e) On what intervals is f(x) increasing? decreasing?

(f) On what intervals is f(x) concave up? concave down?
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13. (10 points) Sketch the graph of a function f(x) that satisfies the following properties:

• x-intercepts: −3, 3

• y-intercepts: 2

• vertical asymptotes: x = −5 and x = 5

• horizontal asymptotes: y = −1 and y = 1

• f ′(x) > 0 on (−∞,−5) ∪ (−5, 0) ∪ (5,∞)

• f ′(x) < 0 on (0, 5)

• f ′′(x) > 0 on (−∞,−5)

• f ′′(x) < 0 on (−5, 5) ∪ (5,∞)

-10 -5 5 10

-10

-5

5

10
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14. (12 points)

(a) A particle is moving with the given velocity and position data. Find the position function

s(t) of the particle.

v(t) = 10 sin t+ 3 cos t, s(π/4) = 12

(b) Let f(x) =

∫ x2

1

(t − 4)e−t
2

dt for all real numbers x. On what intervals is f(x) an

increasing function?
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15. (15 points) A woman at a point A on the shore of a circular lake with radius 2 miles

wants to arrive at the point C diametrically opposite A on the other side of the lake in the

shortest possible time (see the figure). She can walk at the rate of 4 miles/h and row a boat

at 2 miles/h. How should she proceed? Justify your answer. (It may help to know that√
3 = 1.73 . . . .)
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Formula Sheet

You may tear this page off.

sin(x+ y) = sinx cos y + cosx sin y

sin(x− y) = sinx cos y − cosx sin y

cos(x+ y) = cos x cos y − sinx sin y

cos(x− y) = cos x cos y + sinx sin y

sin 2x = 2 sin x cosx

cos 2x = cos2 x− sin2 x

= 2 cos2 x− 1

= 1− 2 sin2 x

cos2 x =
1 + cos 2x

2

sin2 x =
1− cos 2x

2
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Scratch Paper. You may tear this page off. Nothing you write on this page will be graded.
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