Solutions will not be provided to these sheets. If you wish to talk through these problems, either attend the study halls or come to office hours.

The Division Algorithm: $n=q d+r, n, q, d, r \in \mathbb{Z}, 0 \leq r \leq d-1$.
For each of the following pairs of values for n and d, find q and r as in the division algorithm.

- $n=100, d=9$
- $n=4925, d=7$
- $n=2113, d=306$
- $n=32768, d=41$

The mod and div functions: If $n=q d+r$ as in the division algorithm, then $q=n \operatorname{div} d$ and $r=n \bmod d$.
For each of the following, d, n div d, and $n \bmod d$ will be given. Find n. If the given values are not possible, explain why.

- $n \operatorname{div} 4=3, n \bmod 4=3$
- $n \operatorname{div} 12=-16, n \bmod 12=0$
- $n \operatorname{div} 7=21, n \bmod 7=5$
- $n \operatorname{div} 8=901, n \bmod 8=8$.

The Divisibility Relation: For $n, m \in \mathbb{Z}, n \mid m$ if $\exists k \in \mathbb{Z}$ so that $n k=m$.
For each pair of n, m, determine whether or not $n \mid m$

- $n=3, m=913$
- $n=17, m=731$
- $n=2, m=-684$
- $n=-6, m=84$
- $n=12, m=200$
- $n=0, m=1040$
- $n=210, m=3$
- $n=47, m=0$

Congruence Relations: For $a, b \in \mathbb{Z}, m \in \mathbb{N}$, we say $a \equiv b(\bmod m)$ if $m \mid(a-b)$.
For each a, b, m given, determine if $a \equiv b(\bmod m)$.

- $a=1, b=47, m=23$
- $a=203, b=600, m=3$
- $a=0, b=1002, m=11$
- $a=1768, b=-6, m=13$

For each a, m given, determine the smallest non-negative integer b such that $a \equiv b(\bmod m)$.

- $a=14, m=2$
- $a=271, m=13$
- $a=16, m=94$
- $a=275, m=16$

Find the smallest non-negative integer congruent to the given expression modulo the given m.

- $23+31 \equiv$? $(\bmod 7)$
- $-12+101^{6} \equiv ?(\bmod 25)$
- $27 \cdot(-3) \cdot(14+51) \equiv$? $(\bmod 11)$
- $41-16 \cdot 3 \equiv ?(\bmod 20)$
- $3 \cdot 5 \cdot 7 \cdot 100 \equiv ?(\bmod 73)$
- $(31+26) \cdot(25-42) \equiv ?(\bmod 17)$

Base b Expansions: Let $b>1$ an integer and $n \in \mathbb{N}$. The base b representation of n is, with $0 \leq a_{i} \leq b-1$ for all i and $a_{m} \neq 0$

$$
n=a_{m} b^{m}+a_{m-1} b^{m-1}+\ldots+a_{1} b^{1}+a_{0}
$$

We write $n=\left(a_{m} a_{m-1} \ldots a_{1} a_{0}\right)_{b}$.
In the following, you will be given a number n written in some base and a value $b>1$. Write n in base b.

- $n=210, b=2$
- $n=(A A 3)_{16}, b=10$
- $n=(10110111010)_{2}, b=10$
- $n=3251, b=8$
- $n=(F 3 C)_{16}, b=2$
- $n=(537)_{8}, b=10$
- $n=(216)_{8}, b=2$
- $n=(10001010101)_{2}, b=16$
- $n=(100100111)_{2}, b=8$

Modular Exponentiation: A particularly fast algorithm to compute $a^{n} \bmod m$. For each of the following a, n, m are given. Apply the modular exponentiation algorithm.

- $a=21, n=3, m=35$
- $a=2, n=298, m=23$
- $a=611, n=100, m=11$
- $a=7, n=17, m=19$
- $a=50, n=481, m=7$
- $a=-2, n=25, m=33$

Prime Factorization: Every positive integer can be written uniquely as a product of prime numbers in decreasing order. For each of the following integers, find its prime factorization. You may find the following list of small primes helpful:

$$
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61, \ldots
$$

- 5247
- 113
- 574

Greatest Common Divisors \& Euclidean Algorithm: The key lemma for the Euclidean algorithm is that if $a=b q+r$ (all integers), then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.
Use the Euclidean algorithm to find the gcd of each pair of integers.

- 213, 97
- 6234, 426
- 351, 7182
- 4315,85
- 123, 691
- 2700, 131

Bezout Coefficients: If $a, b \in \mathbb{N}$, then $\exists s, t \in \mathbb{Z}$ such that $s a+t b=\operatorname{gcd}(a, b) . s, t$ are Bezout coefficients.
Use the reversed Euclidean algorithm strategy to find Bezout coefficients for the given pair of integers.

- 213,97
- 67,43
- 1111, 111
- 5247,106

Finding Inverses Modulo m : If $\operatorname{gcd}(a, m)=1$, find the inverse of a modulo m by finding Bezout coefficients for a, m, the coefficient of a is the inverse modulo m.
For each of the following a, m find the inverse of a modulo m, write it as the smallest possible non-negative integer mod m congruent to your result.

- $a=97, m=213$
- $a=16, m=45$
- $a=100, m=7$

Solving Linear Congruences: To solve $a x \equiv b(\bmod m)$ for x if $\operatorname{gcd}(a, m)=1$, multiply both sides by the inverse of a modulo m. For each of the following equations, solve for x, in smallest non-negative form.

- $3 x \equiv 5(\bmod 7)$
- $-2 x \equiv 4(\bmod 31)$
- $7 x \equiv 31(\bmod 97)$
- $21 x \equiv 7(\bmod 25)$
- $16 x \equiv 11(\bmod 101)$
- $11 x \equiv 92(\bmod 314)$

