## Operations on Sets

Given the sets $A=\{1,3,4,5,6\}, B=\{2,4,6,8\}$, and $C=\{7,8,9\}$, and a universe consisting of numbers between 1 and 10 , inclusive, determine each of the following:

- $A \cup B$
- $B \backslash \bar{A}$
- $A \backslash A$
- $\bar{C}$
- $\bar{B} \times C$
- $B \cap(C \cup A)$


## Subsets and Supersets

For each of the following pairs of sets $A, B$ determine if $A \subset B, A=B, A \supset B$, or if none of these is true.

- $A=\left\{n^{2} \mid n \in \mathbb{N}\right\}, B=\left\{n^{2} \mid n \in \mathbb{Z}\right\}$
- $A=\left\{n^{2}+m \mid n \in \mathbb{Q}, m \in \mathbb{Q}\right\}, B=\{n / m \mid n, m \in \mathbb{Z} \backslash\{0\}\}$
- $A=\{2 n+1 \mid n$ is even $\}, B=\{4 n-1 \mid n \in \mathbb{Z}\}$
- $A=\left\{x \in \mathbb{R} \mid x^{2}+3 x+2=0\right\}, B=\{x \in \mathbb{Z} \mid 2 x+4=0\}$


## Set Identities

For each written identity, determine if it is True or False. If True, write a proof. If False, provided a counterexample.

- $\overline{(A \cup B)} \cap C=C \backslash(A \cup B)$
- $A \times A \backslash B \times C=(A \backslash B) \times(A \backslash C)$
- $(A \times A) \cup(B \times C)=(A \cup B) \times(A \cup C)$
- $(\bar{A} \backslash B) \cup \bar{C}=(B \backslash C) \cap(B \backslash A) \cup(A \cup B)$


## Cardinalities of Sets

For each written set, find its cardinality. If it not a finite set, write 'infinite'.

- $\{1,3,5,5,7\}$
- $\{\mathbb{N}\}$
- \{'hello', 'goodbye', 112\}
- $\left\{n^{2}-1 \mid-2 \leq n<4, n \in \mathbb{Z}\right\}$
- $\emptyset$
- $\{a, 3,\{1,2\}, b\}$
- $\mathbb{N}$
- $\{\emptyset, \emptyset, \emptyset\}$
- $\{\mathbb{N}, \mathbb{Q}, \mathbb{Z}, \mathbb{R}, \emptyset\}$


## Well-definedness of Functions

In each part, I have attempted to define a function from a given domain to a given codomain. Determine whether or not these are well defined functions.

- $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{2}$
- $h:[2,4] \rightarrow[3,5], h(x)= \begin{cases}3 & x=3 \\ x+1 & 2 \leq x \leq 3 \\ x^{2} & 3 \leq x \leq 4\end{cases}$
- $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=\sqrt{x}$
- $f: \mathbb{N} \rightarrow \mathbb{N}, f(x)=\sin (x)$


## Surjectivity, Injectivity, Bijectivity

For each of the given functions, prove if it is injective, surjective, or bijective. If it is invertible, find its inverse.

- $f: \mathbb{N} \rightarrow \mathbb{N}, f(n)=2 n-1$
- $f: \mathbb{Z} \rightarrow \mathbb{R}, f(n)=n^{3}$
- $f:(1, \infty) \rightarrow \mathbb{R}, f(x)=\frac{x^{2}}{x-1}$
- $g:\{$ english words $\} \rightarrow$ \{english alphabet $\}$, word $\mapsto$ its first letter
- $g: \mathbb{R} \backslash\{1\} \rightarrow \mathbb{R}, g(x)=\frac{x+1}{x-1}$
- Let $A$ be the set of odd numbers. $f: A \rightarrow \mathbb{Z}, f(n)=\frac{n+1}{2}$

