Writing Proofs

Using the methods discussed in class, write a proof of each of the following statements.

- The product of an odd number and an even number is odd.
- If $5 n^{2}+8$ is even, then n is even.
- If x, y are real numbers and $x+y=8$, then either $x \geq 4$ or $y \geq 4$.
- If n^{2} is odd, then n is odd.
- It is not the case that every even number is a perfect square.
- It is not the case that $\frac{n-1}{2}$ is odd whenever n is odd.
- Every odd number is the difference of two perfect squares.
- If $x>1$ is a real number, then $x^{2}>x$.
- The multiplicative inverse of any rational number is rational.
- If m, n are integers and $m+n$ is even, then either m, n are both odd or both even.
- If n, m are integers and $n+m$ is odd, then either n or m is odd.
- There are no integers x, y such that $5 x^{2}+2 y^{2}=14$.
- It is possible to use 2×1 dominoes without overlapping to tile an 8×8 chessboard.
- It is impossible to use 2×1 dominoes without overlapping to tile an 8×8 chessboard with opposite corners removed. (Hint: Consider the number of black and white spaces.)
- For any integer $n, n^{3}-n$ is even.
- For any integers a, b, c if $a^{2}+b^{2}=c^{2}$, then either a or b is even.
- If x is a real number, then $x(4-x) \leq 4$.

