MATH 150 - WRITTEN HOMEWORK \# 9

DUE FRIDAY, APRIL 19, 2024 AT 11:59 P.M.

Instructions: Please

(i) Submit your work to Gradescope as one file.
(ii) Use the Gradescope tool to match problems to pages in your file.
(iii) Print or type your name at the top of the first page.
(iv) Write neatly and make sure your uploaded images are legible, or use LaTex or another technical typesetting application if you know how to.
(v) Begin each problem by writing its statement. Use complete sentences and statements.
(vi) Always give detailed reasons for your answers.

Problems:

Show your work clearly for each problem so that it can be understood how you arrived at your answer.
(1) (8 points) Consider a natural number n with a base 10 expansion as $111 \cdots 11$, where there are $3^{k} 1 \mathrm{~s}$ in the base expansion. Prove using induction that n is divisible by 3^{k}.
(2) (8 points) Consider the function recursively defined by

$$
f(1)=3, \quad f(2)=2, \quad f(3)=1
$$

and

$$
f(n+1)=f(n)+f(n-1) f(n-2) \text { for } n \geq 3
$$

Prove using strong induction that $f(n) \leq 2^{2^{n}}$ for all integers $n \geq 1$.
(3) (8 points) Give a proof by induction that for every positive integer n,

$$
1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots++\frac{1}{\sqrt{n}}>2(\sqrt{n+1}-1)
$$

(4) (8 points) Use induction to prove that for any positive integer n,

$$
\sum_{i=1}^{n} \frac{1}{i^{2}} \leq 2-\frac{1}{n}
$$

(5) (8 points) Prove using induction that $n^{3}+n>5 n^{2}+4 n-8$ for all positive integers $n \geq 6$.

