MATH 150 - WRITTEN HOMEWORK # 9

DUE FRIDAY, APRIL 19, 2024 AT 11:59 P.M.

Show your work clearly for each problem so that it can be understood how you arrived at your answer.

(1) (8 points) Consider a natural number n with a base 10 expansion as $111 \cdots 11$, where there are 3^k 1s in the base expansion. Prove using induction that n is divisible by 3^k .

Solution: We apply induction on *k*.

Base step: If k = 1, then we have $n = 111 = 3 \cdot 37$, thus *n* is divisible by 3.

Induction step: Assume that for some $k \in \mathbb{N}$, $n = 111 \cdots 11$ with 3^k 1s in the base 10 expansion is divisible by 3^k , i.e., $n = 3^k a$ for $a \in \mathbb{Z}$.

We want to show that $m = 111 \cdots 111$ with 3^{k+1} 1s in the base 10 expansion is divisible by 3^{k+1} .

Observe that m has 3 times as many 1s as in the expansion for n, and so we can write

$$m = n + 10^{3^{k}}n + 10^{2 \cdot 3^{k}}n = (1 + 10^{3^{k}} + 10^{2 \cdot 3^{k}})n.$$

We can see that base 10 expansion of $1 + 10^{3^k} + 10^{2 \cdot 3^k}$ contains 3 1s, thus it is divisible by 3 (since the sum of base 10 digits is 3), and we can write

$$1 + 10^{3^k} + 10^{2 \cdot 3^k} = 3b$$

for some $b \in \mathbb{Z}$. Now, combining this together with the inductive hypothesis, we get

$$m = (1 + 10^{3^{k}} + 10^{2 \cdot 3^{k}})n = (3b)(3^{k}a) = 3^{k+1}ab$$

Hence, *m* is divisible by 3^{k+1} , as desired.

(2) (8 points) Consider the function recursively defined by

$$f(1) = 3, \quad f(2) = 2, \quad f(3) = 1,$$

and

$$f(n+1) = f(n) + f(n-1)f(n-2)$$
 for $n \ge 3$.

Prove using strong induction that $f(n) \leq 2^{2^n}$ for all integers $n \geq 1$.

Solution: Let P(n): $f(n) \le 2^{2^n}$.

Base step: If n = 1, then $f(1) = 3 \le 2^2 = 4$, if n = 2, then $f(2) = 2 \le 2^4$, and if n = 3, then $f(\overline{3}) = 1 \le 2^8$. Thus, P(1), P(2), and P(3) are true.

<u>Induction step</u>: Assume P(j) is true, i.e., $f(j) \le 2^{2^j}$, $\forall j \in \mathbb{Z}$ with $1 \le j \le k$, where $k \ge 3$. We want to show that P(k + 1) is true, i.e., $f(k + 1) \le 2^{2^{k+1}}$.

Observe that by recursive definition, we have

$$f(k+1) = f(k) + f(k-1)f(k-2)$$

$$\leq 2^{2^{k}} + 2^{2^{k-1}}2^{2^{k-2}} \quad \text{(by inductive hypothesis)}$$

$$= 2^{2^{k}} + 2^{2^{k-1}+2^{k-2}}$$

$$\leq 2^{2^{k}} + 2^{2^{k}} \quad \text{since} \ 2^{k-1} + 2^{k-2} \leq 2 \cdot 2^{k-1} = 2^{k}$$

$$= 2^{2^{k}+1}.$$

Now observe that

$$2^k + 1 \le 2^k + 2^k = 2 \cdot 2^k = 2^{k+1}$$

whenever $k \ge 0$. Therefore, we conclude that

$$f(k+1) \le 2^{2^{k+1}} \le 2^{2^{k+1}},$$

completing the proof.

(3) (8 *points*) Give a proof by induction that for every positive integer *n*,

$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \ldots + \frac{1}{\sqrt{n}} > 2(\sqrt{n+1} - 1).$$

Solution: *Base step:* If n = 1, then we have $2(\sqrt{2} - 1) = \sqrt{8} - 2 < 3 - 2 = 1$.

Induction step: Assume that for $n = k \ge 1$, we have

$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \ldots + \frac{1}{\sqrt{k}} > 2(\sqrt{k+1} - 1).$$

We want to prove that for n = k + 1,

$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \ldots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} > 2(\sqrt{k+2} - 1).$$

By induction hypothesis, we have

$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \ldots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} > 2(\sqrt{k+1}-1) + \frac{1}{\sqrt{k+1}}$$

Thus, we need to show that

$$2(\sqrt{k+1}-1) + \frac{1}{\sqrt{k+1}} > 2(\sqrt{k+2}-1).$$

This is equivalent to prove that

$$\frac{1}{\sqrt{k+1}} > 2(\sqrt{k+2} - \sqrt{k+1}) = \frac{2}{\sqrt{k+2} + \sqrt{k+1}}.$$

Since

$$\frac{2}{\sqrt{k+2} + \sqrt{k+1}} \le \frac{2}{2\sqrt{k+1}} = \frac{1}{\sqrt{k+1}},$$

we get the desired conclusion.

(4) (8 points) Use induction to prove that for any positive integer n,

$$\sum_{i=1}^{n} \frac{1}{i^2} \le 2 - \frac{1}{n}.$$

Solution: *Base step:* If n = 1, then we have

$$\sum_{i=1}^{1} \frac{1}{i^2} = 1 \le 2 - \frac{1}{1} = 1,$$

which is clearly true.

Induction step: Assume that for $n = k \ge 1$, we have

$$\sum_{i=1}^{k} \frac{1}{i^2} \le 2 - \frac{1}{k}.$$

We want to show that for n = k + 1,

$$\sum_{i=1}^{k+1} \frac{1}{i^2} \le 2 - \frac{1}{k+1}.$$

We use induction hypothesis to see that

$$\sum_{i=1}^{k+1} \frac{1}{i^2} = \sum_{i=1}^k \frac{1}{i^2} + \frac{1}{(k+1)^2} \le 2 - \frac{1}{k} + \frac{1}{(k+1)^2}$$

Thus, we need to show that

$$2 - \frac{1}{k} + \frac{1}{(k+1)^2} \le 2 - \frac{1}{k+1}.$$

Observe that $k^2 + 2k \le k^2 + 2k + 1 \iff k(k+1) + k \le (k+1)^2$. Dividing both sides by $k(k+1)^2$, we get

$$\frac{1}{k+1} + \frac{1}{(k+1)^2} \le \frac{1}{k} \iff -\frac{1}{k} + \frac{1}{(k+1)^2} \le -\frac{1}{k+1}.$$

Adding 2 on both sides, we obtain

$$2 - \frac{1}{k} + \frac{1}{(k+1)^2} \le 2 - \frac{1}{k+1},$$

completing the proof.

(5) (8 points) Prove using induction that $n^3 + n > 5n^2 + 4n - 8$ for all positive integers $n \ge 6$. **Solution:** *Base step:* If n = 6, then we have $n^3 + n = 216 + 6 = 222$, while $5n^2 + 4n - 8 = 180 + 24 - 8 = 196$. Thus, $n^3 + n > 5n^2 + 4n - 8$ for n = 1.

Induction step: Assume that $n = k \ge 6$ and that $k^3 + k > 5k^2 + 4k - 8$.

We want to show that for n = k + 1, we have that $(k+1)^3 + (k+1) > 5(k+1)^2 + 4(k+1) - 8$.

We see that

$$(k+1)^3 + (k+1) = (k^3 + 3k^2 + 3k + 1) + (k+1)$$

> $(5k^2 + 4k - 8) + (3k^2 + 3k + 1)$ (by induction hypothesis)
= $8k^2 + 7k - 7$.

On the other hand,

$$5(k+1)^2 + 4(k+1) - 8 = 5k^2 + 14k + 1.$$

Thus, we need to show that

$$8k^2 + 7k - 7 > 5k^2 + 14k + 1 \iff 3k^2 - 7k - 8 > 0.$$

Observe that the (real) quadratic equation $3x^2 - 7x - 8 = 0$ has two real roots:

$$x = \frac{7 \pm \sqrt{145}}{6} \approx -\frac{5}{6}$$
 and $\frac{19}{6}$

since $\sqrt{145} \approx 12$. And, for $k \ge 6 > 4 >$ both of these roots, thus $3k^2 - 7k - 8 > 0$, completing the proof.