MATH 150 - WRITTEN HOMEWORK \# 9

DUE FRIDAY, APRIL 19, 2024 AT 11:59 P.M.

Show your work clearly for each problem so that it can be understood how you arrived at your answer.
(1) (8 points) Consider a natural number n with a base 10 expansion as $111 \cdots 11$, where there are $3^{k} 1 \mathrm{~s}$ in the base expansion. Prove using induction that n is divisible by 3^{k}.
Solution: We apply induction on k.
Base step: If $k=1$, then we have $n=111=3 \cdot 37$, thus n is divisible by 3 .
Induction step: Assume that for some $k \in \mathbb{N}, n=111 \cdots 11$ with $3^{k} 1$ s in the base 10 expansion is divisible by 3^{k}, i.e., $n=3^{k} a$ for $a \in \mathbb{Z}$.

We want to show that $m=111 \cdots 111$ with $3^{k+1} 1$ s in the base 10 expansion is divisible by 3^{k+1}.

Observe that m has 3 times as many 1 s as in the expansion for n, and so we can write

$$
m=n+10^{3^{k}} n+10^{2 \cdot 3^{k}} n=\left(1+10^{3^{k}}+10^{2 \cdot 3^{k}}\right) n .
$$

We can see that base 10 expansion of $1+10^{3^{k}}+10^{2 \cdot 3^{k}}$ contains 31 s , thus it is divisible by 3 (since the sum of base 10 digits is 3), and we can write

$$
1+10^{3^{k}}+10^{2 \cdot 3^{k}}=3 b
$$

for some $b \in \mathbb{Z}$. Now, combining this together with the inductive hypothesis, we get

$$
m=\left(1+10^{3^{k}}+10^{2 \cdot 3^{k}}\right) n=(3 b)\left(3^{k} a\right)=3^{k+1} a b
$$

Hence, m is divisible by 3^{k+1}, as desired.
(2) (8 points) Consider the function recursively defined by

$$
f(1)=3, \quad f(2)=2, \quad f(3)=1
$$

and

$$
f(n+1)=f(n)+f(n-1) f(n-2) \text { for } n \geq 3
$$

Prove using strong induction that $f(n) \leq 2^{2^{n}}$ for all integers $n \geq 1$.
Solution: Let $\mathrm{P}(n): f(n) \leq 2^{2^{n}}$.
Base step: If $n=1$, then $f(1)=3 \leq 2^{2}=4$, if $n=2$, then $f(2)=2 \leq 2^{4}$, and if $n=3$, then $f\left(\overline{3)=1 \leq} 2^{8}\right.$. Thus, $\mathrm{P}(1), \mathrm{P}(2)$, and $\mathrm{P}(3)$ are true.

Induction step: Assume $\mathrm{P}(j)$ is true, i.e., $f(j) \leq 2^{2^{j}}, \forall j \in \mathbb{Z}$ with $1 \leq j \leq k$, where $k \geq 3$. We want to show that $\mathrm{P}(k+1)$ is true, i.e., $f(k+1) \leq 2^{2^{k+1}}$.
Observe that by recursive definition, we have

$$
\begin{aligned}
f(k+1) & =f(k)+f(k-1) f(k-2) \\
& \leq 2^{2^{k}}+2^{2^{k-1}} 2^{2^{k-2}} \quad \text { (by inductive hypothesis) } \\
& =2^{2^{k}}+2^{2^{k-1}+2^{k-2}} \\
& \leq 2^{2^{k}}+2^{2^{k}} \quad \text { since } 2^{k-1}+2^{k-2} \leq 2 \cdot 2^{k-1}=2^{k} \\
& =2^{2^{k}+1} .
\end{aligned}
$$

Now observe that

$$
2^{k}+1 \leq 2^{k}+2^{k}=2 \cdot 2^{k}=2^{k+1}
$$

whenever $k \geq 0$. Therefore, we conclude that

$$
f(k+1) \leq 2^{2^{k}+1} \leq 2^{2^{k+1}}
$$

completing the proof.
(3) (8 points) Give a proof by induction that for every positive integer n,

$$
1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots+\frac{1}{\sqrt{n}}>2(\sqrt{n+1}-1)
$$

Solution: Base step: If $n=1$, then we have $2(\sqrt{2}-1)=\sqrt{8}-2<3-2=1$.
Induction step: Assume that for $n=k \geq 1$, we have

$$
1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots+\frac{1}{\sqrt{k}}>2(\sqrt{k+1}-1)
$$

We want to prove that for $n=k+1$,

$$
1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots+\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+1}}>2(\sqrt{k+2}-1)
$$

By induction hypothesis, we have

$$
1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots+\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+1}}>2(\sqrt{k+1}-1)+\frac{1}{\sqrt{k+1}}
$$

Thus, we need to show that

$$
2(\sqrt{k+1}-1)+\frac{1}{\sqrt{k+1}}>2(\sqrt{k+2}-1)
$$

This is equivalent to prove that

$$
\frac{1}{\sqrt{k+1}}>2(\sqrt{k+2}-\sqrt{k+1})=\frac{2}{\sqrt{k+2}+\sqrt{k+1}}
$$

Since

$$
\frac{2}{\sqrt{k+2}+\sqrt{k+1}} \leq \frac{2}{2 \sqrt{k+1}}=\frac{1}{\sqrt{k+1}}
$$

we get the desired conclusion.
(4) (8 points) Use induction to prove that for any positive integer n,

$$
\sum_{i=1}^{n} \frac{1}{i^{2}} \leq 2-\frac{1}{n}
$$

Solution: Base step: If $n=1$, then we have

$$
\sum_{i=1}^{1} \frac{1}{i^{2}}=1 \leq 2-\frac{1}{1}=1
$$

which is clearly true.
$\underline{\text { Induction step: Assume that for } n=k \geq 1 \text {, we have }}$

$$
\sum_{i=1}^{k} \frac{1}{i^{2}} \leq 2-\frac{1}{k}
$$

We want to show that for $n=k+1$,

$$
\sum_{i=1}^{k+1} \frac{1}{i^{2}} \leq 2-\frac{1}{k+1}
$$

We use induction hypothesis to see that

$$
\sum_{i=1}^{k+1} \frac{1}{i^{2}}=\sum_{i=1}^{k} \frac{1}{i^{2}}+\frac{1}{(k+1)^{2}} \leq 2-\frac{1}{k}+\frac{1}{(k+1)^{2}}
$$

Thus, we need to show that

$$
2-\frac{1}{k}+\frac{1}{(k+1)^{2}} \leq 2-\frac{1}{k+1}
$$

Observe that $k^{2}+2 k \leq k^{2}+2 k+1 \Longleftrightarrow k(k+1)+k \leq(k+1)^{2}$. Dividing both sides by $k(k+1)^{2}$, we get

$$
\frac{1}{k+1}+\frac{1}{(k+1)^{2}} \leq \frac{1}{k} \Longleftrightarrow-\frac{1}{k}+\frac{1}{(k+1)^{2}} \leq-\frac{1}{k+1}
$$

Adding 2 on both sides, we obtain

$$
2-\frac{1}{k}+\frac{1}{(k+1)^{2}} \leq 2-\frac{1}{k+1}
$$

completing the proof.
(5) (8 points) Prove using induction that $n^{3}+n>5 n^{2}+4 n-8$ for all positive integers $n \geq 6$.

Solution: Base step: If $n=6$, then we have $n^{3}+n=216+6=222$, while $5 n^{2}+4 n-8=$ $180+24-8=196$. Thus, $n^{3}+n>5 n^{2}+4 n-8$ for $n=1$.

Induction step: Assume that $n=k \geq 6$ and that $k^{3}+k>5 k^{2}+4 k-8$.
We want to show that for $n=k+1$, we have that $(k+1)^{3}+(k+1)>5(k+1)^{2}+4(k+1)-8$.

We see that

$$
\begin{aligned}
(k+1)^{3}+(k+1) & =\left(k^{3}+3 k^{2}+3 k+1\right)+(k+1) \\
& >\left(5 k^{2}+4 k-8\right)+\left(3 k^{2}+3 k+1\right) \quad \text { (by induction hypothesis) } \\
& =8 k^{2}+7 k-7 .
\end{aligned}
$$

On the other hand,

$$
5(k+1)^{2}+4(k+1)-8=5 k^{2}+14 k+1
$$

Thus, we need to show that

$$
8 k^{2}+7 k-7>5 k^{2}+14 k+1 \Longleftrightarrow 3 k^{2}-7 k-8>0
$$

Observe that the (real) quadratic equation $3 x^{2}-7 x-8=0$ has two real roots:

$$
x=\frac{7 \pm \sqrt{145}}{6} \approx-\frac{5}{6} \text { and } \frac{19}{6}
$$

since $\sqrt{145} \approx 12$. And, for $k \geq 6>4>$ both of these roots, thus $3 k^{2}-7 k-8>0$, completing the proof.

