MATH 150 - WRITTEN HOMEWORK \# 8

DUE THURSDAY, APRIL 11, 2024 AT 11:59 P.M.

Show your work clearly for each problem so that it can be understood how you arrived at your answer.
(1) (10 points)
(a) Find an inverse of 19 modulo 141 in \mathbb{Z}_{141}.
(b) Solve the linear congruence $19 x \equiv 9(\bmod 141)$. Your answer must be in \mathbb{Z}_{141}.

Solution:
(a) We first use the Euclidean algorithm to verify that the $\operatorname{gcd}(19,141)=1$.

$$
\begin{aligned}
141 & =19(7)+8 \\
19 & =8(2)+3 \\
8 & =3(2)+2 \\
3 & =2(1)+1 \\
2 & =1(2)+0 .
\end{aligned}
$$

Thus, $\operatorname{gcd}(19,141)=1$, so inverse of 19 modulo 141 exists. To find the inverse, we work backwards to compute the Bezout coefficients. From the Euclidean algorithm, we have

$$
\begin{aligned}
8 & =141-19(7) \\
3 & =19-8(2) \\
2 & =8-3(2) \\
1 & =3-2(1)=3-(8-3(2))(1) \\
& =3(3)-8=(19-8(2))(3)-8 \\
& =19(3)-8(7)=19(3)-(141-19(7))(7)=19(52)-141(7)
\end{aligned}
$$

Therefore, $19 \cdot 52 \equiv 1(\bmod 141)$, and the inverse of $19 \operatorname{modulo} 141$ is 52 .
(b) Using part (a), we have

$$
\begin{aligned}
19 \cdot 52 & \equiv 1(\bmod 141) \\
x & \equiv 52 \cdot 9(\bmod 141) \\
x & \equiv 468 \equiv 45(\bmod 141) .
\end{aligned}
$$

Hence, the solution x for the given linear congruence in \mathbb{Z}_{141} is 45 .
(2) (10 points) Use the Chinese Remainder Theorem to find all integer solutions x to the following system of congruences:

$$
\begin{aligned}
x-4 & \equiv 1(\bmod 5) \\
3 x+2 & \equiv 3(\bmod 7) \\
5 x & \equiv 1(\bmod 9) .
\end{aligned}
$$

Solution: Observe that all moduli are relatively prime and thus, we will be able to find a unique solution modulo $m=m_{1} m_{2} m_{3}=5 \cdot 7 \cdot 9=315$. We then isolate x on the left-hand side of the first two congruences to get:

$$
\begin{aligned}
x & \equiv 0(\bmod 5) \\
3 x & \equiv 1(\bmod 7) \\
5 x & \equiv 1(\bmod 9) .
\end{aligned}
$$

Now we find the inverse of 3 modulo 7 and 5 modulo 9 to further isolate x in the second and third congruences, respectively. Note that the inverse of $3 \operatorname{modulo} 7$ is 5 since $15 \equiv 1(\bmod 7)$ and the inverse of 5 modulo 9 is 2 since $10 \equiv 1(\bmod 9)$. Thus, we obtain the following system of congruences:

$$
\begin{aligned}
& x \equiv 0(\bmod 5) \\
& x \equiv 5(\bmod 7) \\
& x \equiv 2(\bmod 9)
\end{aligned}
$$

The solution is $x=a_{1} M_{1} y_{1}+a_{2} M_{2} y_{2}+a_{3} M_{3} y_{3}$, where $a_{1}=0, a_{2}=5, a_{3}=2$. Thus,

$$
x=5 M_{2} y_{2}+2 M_{3} y_{3},
$$

where $M_{2}=315 / 7=45, M_{3}=315 / 9=35$, and y_{k} is an inverse of M_{k} modulo m_{k} for $k=2,3$.
Need to find y_{2}, an inverse of 45 modulo 7 , which is equivalent to 3 modulo 7 . Thus, $y_{2}=3$ as seen above.

Need to find y_{3}, an inverse of 35 modulo 9 , which is equivalent to -1 modulo 9 . Thus, y_{3} must satisfy the congruence: $-y_{3} \equiv 1(\bmod 9)$. Note that $y_{3}=-1$ works, since $1 \equiv 1(\bmod 9)$.

Hence, the solution is

$$
x=5 \cdot 45 \cdot 5+2 \cdot 35 \cdot(-1)=1125-70=1055
$$

Since $m=315$, the unique solution in \mathbb{Z}_{315} is: $1055-3(315)=110$. Hence, all integer solutions are given by: $x=110+315 k ; k \in \mathbb{Z}$.
(3) (10 points)
(a) Compute $3^{7941} \bmod 7$.
(b) Compute $6^{17} \bmod 20$.

Solution:

(a) By Fermat's Little Theorem, $3^{6} \equiv 1(\bmod 7)$. We compute $7941=6(1323)+3$. Thus,

$$
3^{7941}=3^{6(1323)+3} \equiv 1^{1323} 3^{3}(\bmod 7)
$$

Now we can conclude the computation by simply calculating $3^{3}=27$ and $27 \bmod 7=6$.
(b) This is done by repeated squaring. Observe that $17=2^{4}+1$. We then compute

$$
\begin{gathered}
6^{2}=36 \equiv 16(\bmod 20) \\
6^{4} \equiv 16^{2} \equiv(-4)^{2} \equiv 16(\bmod 20)
\end{gathered}
$$

This is already enough information to observe that 6 raised to any power of 2 will be congruent to $16 \bmod 20$. So

$$
6^{17}=6^{16} 6 \equiv(16)(6) \equiv 96 \equiv 16(\bmod 20) .
$$

(4) (10 points) Find all integers x satisfying

$$
4 x^{2}+4 x-3 \equiv 0(\bmod 11) .
$$

Solution: Factoring the quadratic equation, we have

$$
(2 x-1)(2 x+3) \equiv 0(\bmod 11)
$$

Now we recall the fact that if p is a prime and $p \mid a_{1} a_{2} \cdots a_{n}$, where each a_{i} is an integer, then $p \mid a_{i}$ for some i. Therefore, we have

$$
\begin{aligned}
& 2 x-1 \equiv 0(\bmod 11), \quad \text { or } 2 x+3 \equiv 0(\bmod 11) \\
& 2 x \equiv 1(\bmod 11), \quad \text { or } 2 x \equiv-3 \equiv 8(\bmod 11) .
\end{aligned}
$$

Note that the inverse of 2 modulo 11 is 6 since $12 \equiv 1(\bmod 11)$. Thus,

$$
x \equiv 6(\bmod 11), \quad \text { or } \quad x \equiv 48 \equiv 4(\bmod 11) .
$$

Hence, all integer solutions x are:

$$
x=11 k+6, \quad \text { or } \quad x=11 k+4,
$$

for $k \in \mathbb{Z}$.

