MATH 150 - WRITTEN HOMEWORK \# 7

DUE TUESDAY, MARCH 26, 2024 AT 11:59 P.M.

(1) (8 points) Prove that the sum of cubes of three consecutive integers is always divisible by 9 .

Solution: For $n \in \mathbb{Z}$, consider $n-1)^{3}, n^{3}$, and $(n+1)^{3}$. Then

$$
(n-1)^{3}+n^{3}+(n+1)^{3}=3 n\left(n^{2}+2\right)
$$

We either have that n is divisible by 3 , then $3 n$ is divisible by 9 , so we are done. Or otherwise, we have $n=3 k+r$, where $r=1,2$ and $k \in \mathbb{Z}$. If $n=3 k+1$, then $n^{2}+2=9 k^{2}+6 k+3=$ $3\left(3 k^{2}+2 k+1\right)$, which means that $n^{2}+2$ is divisible by 3 , and thus, $3\left(n^{2}+2\right)$ is divisible by 9. If $n=3 k+2$, then $n^{2}+2=9 k^{2}+12 k+6=3\left(3 k^{2}+4 k+2\right)$, meaning that again $n^{2}+2$ is divisible by 3 , and so in this case also $3\left(n^{2}+2\right)$ is divisible by 9 . Either way, the product $3 n\left(n^{2}+2\right)$ is divisible by 9 .
(2) (8 points) Suppose that n and b are positive integers and $b \geq 2$. Prove that the base b representation of n has

$$
\left\lfloor\log _{b} n\right\rfloor+1
$$

digits.
Solution: Let k be the number of digits in the base b representation of n. Observe that the smallest base b number with $k+1$ digits is b^{k}, and the largest base b number with k digits is $b^{k}-1$. Thus, if $b^{k-1} \leq n<b^{k}$, then the base b representation of n has k digits. So for every n such that $b^{k-1} \leq n<b^{k}$, we have $k-1 \leq \log _{b} n<k$. Since there is exactly one integer in a half-open interval of length one, we obtain $\left\lfloor\log _{b} n\right\rfloor=k-1$. Hence, $k=\left\lfloor\log _{b} n\right\rfloor+1$.
(3) (8 points) Use modular exponentiation to find $3^{(111)_{16}} \bmod 7$, showing all of the steps in your work.

Solution: Write

$$
(111)_{16}=16^{2}+16+1=\underset{1}{\left(2^{4}\right)^{2}+2^{4}+2^{0}=2^{8}+2^{4}+2^{0}}
$$

Computing

$$
\begin{aligned}
& 3^{2^{0}} \bmod 7=3 \boldsymbol{\operatorname { m o d }} 7=3 \longleftarrow \\
& 3^{2^{1}} \bmod 7=9 \boldsymbol{\operatorname { m o d }} 7=2 \\
& 3^{2^{2}} \bmod 7=4 \\
& 3^{2^{3}} \bmod 7=16 \bmod 7=2 \\
& 3^{2^{4}} \bmod 7=4 \longleftarrow \\
& 3^{2^{5} \bmod 7} 7=16 \bmod 7=2 \\
& 3^{2^{6}} \bmod 7=4 \\
& 3^{2^{7}} \bmod 7=16 \bmod 7=2 \\
& 3^{2^{8} \bmod 7} 7 \\
& \longleftarrow
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
3^{(111)_{16}} \bmod 7=3^{2^{8}+2^{4}+2^{0}} \bmod 7 & =\left(3^{2^{8}} 3^{2^{4}} 3^{2^{0}}\right) \bmod 7 \\
& =(4 \cdot 4 \cdot 3) \bmod 7 \\
& =(16 \cdot 3) \bmod 7=(2 \cdot 3) \bmod 7=6 .
\end{aligned}
$$

(4) (a) (8 points) Find $\operatorname{gcd}(74,383)$ using the Euclidean Algorithm, showing all of your steps. Solution:

$$
\begin{aligned}
383 & =74(5)+13 \\
74 & =13(5)+9 \\
13 & =9(1)+4 \\
9 & =4(2)+1 \\
4 & =1(4)+0 .
\end{aligned}
$$

Thus, $\operatorname{gcd}(74,383)=1$.
(b) (8 points) Write $\operatorname{gcd}(74,383)$ as a linear combination of 74 and 383 with integer coefficients. Show your work.
Solution: From part (a), we know that

$$
\begin{aligned}
13 & =383-74(5) \\
9 & =74-13(5) \\
4 & =13-9(1) \\
1 & =9-4(2)=9-(13-9(1))(2) \\
& =9(3)-13(2)=(74-13(5))(3)-13(2) \\
& =74(3)-13(17)=74(3)-(383-74(5))(17) \\
& =74(88)+383(-17) .
\end{aligned}
$$

