MATH 150-WRITTEN HOMEWORK \# 6

(1) (a) (3 points) Show that $x^{3}-6 x^{2}+12 x-8$ is big $-\mathcal{O}$ of x^{3}. Please state the values used for witnesses C and k.
Solution: Observe that when $x \geq 1$, we have $1 \leq x \leq x^{2} \leq x^{3}$. Therefore, we get

$$
x^{3}-6 x^{2}+12 x-8 \leq x^{3}+6 x^{2}+12 x+8 \leq x^{3}+6 x^{3}+12 x^{3}+8 x^{3}=27 x^{3} .
$$

Hence, $x^{3}-6 x^{2}+12 x-8$ is big $-\mathcal{O}$ of x^{3} with witnesses $k=1$ andn $C=27$.
(b) (6 points) Determine whether or not the statement

$$
x \text { is big }-\Omega \text { of } x \ln x
$$

is true. Prove your assertion.
Solution: If x is big $-\Omega$ of $x \ln x$, then there exists positive constants C, k such that

$$
x \geq C x \ln x, \quad \forall x>k \Longleftrightarrow \frac{1}{C} \geq \ln x, \quad \forall x>k \Longleftrightarrow e^{1 / C} \geq x, \quad \forall x>k
$$

However, C is a constant, thus if $x>\max \left\{k, e^{1 / C}\right\}$, then $x>e^{1 / C}$, which is a contradiction. Hence, x is not big - Ω of $x \ln x$.
(2) (a) (6 points) Determine whether or not the statement

$$
7 x^{3} \ln x+3 x^{2}+22 \text { is big }-\mathcal{O} \text { of } x^{3}
$$

is true. Prove your assertion.
Solution: If $7 x^{3} \ln x+3 x^{2}+22$ is big $-\mathcal{O}$ of x^{3}, then there exists positive constants C, k such that

$$
7 x^{3} \ln x+3 x^{2}+22 \leq C x^{3}, \quad \forall x>k
$$

Since $3 x^{2}+22>0$, a fortiori, we have

$$
7 x^{3} \ln x \leq C x^{3}, \quad \forall x>k \Longleftrightarrow \ln x \leq \frac{C}{7}, \quad \forall x>k
$$

Thus if $x>\max \left\{k, e^{C / 7}\right\}$ (note that C is a constant), then $\ln x>C / 7$ (i.e., $x>e^{C / 7}$), which is a contradiction. Hence, $7 x^{3} \ln x+3 x^{2}+22$ is not big - \mathcal{O} of x^{3}.
(b) (3 points) Is x^{3} big - Θ of $7 x^{3} \ln x+3 x^{2}+22$? Prove or disprove.

Solution: No. For x^{3} to be big $-\Theta$ of $7 x^{3} \ln x+3 x^{2}+22$, we need that x^{3} is both big $-\mathcal{O}$ and big - Ω of $7 x^{3} \ln x+3 x^{2}+22$. However, we know from part (a) that

$$
7 x^{3} \ln x+3 x^{2}+22 \text { is not big }-\mathcal{O} \text { of } x^{3}
$$

This is equivalent to the statement that

$$
x^{3} \text { is not big }-\Omega \text { of } 7 x^{3} \ln x+3 x^{2}+22 \text {. }
$$

Therefore, the second statement is false.
(3) (a) (5 points) Show that $\frac{x^{2}+1}{x+1}$ is big - \mathcal{O} of x. Please state the values used for witnesses C and k.
Solution: We simplify the fraction first as follows:

$$
\frac{x^{2}+1}{x+1}=\frac{x^{2}-1+2}{x+1}=\frac{x^{2}-1}{x+1}+\frac{2}{x+1}=x-1+\frac{2}{x+1} .
$$

Thus, for $x>1$, we have

$$
\frac{x^{2}+1}{x+1}=x-1+\frac{2}{x+1} \leq x .
$$

Hence, $\frac{x^{2}+1}{x+1}$ is big $-\mathcal{O}$ of x with witnesses $C=1$ and $k=1$.
(b) (6 points) Find the least integer n such that $\frac{x^{4}+x^{2}+1}{x^{3}+1}$ is big $-\mathcal{O}$ of x^{n}. Show why your answer works and state the values used for witnesses C and k.

Solution: Observe that $x^{3}+1=(x+1)\left(x^{2}-x+1\right)$, we add and subtract x to the numerator and rearrange to again simplify the fraction first as follows:

$$
\begin{aligned}
\frac{x^{4}+x^{2}+1}{x^{3}+1}=\frac{\left(x^{4}+x\right)+\left(x^{2}-x+1\right)}{x^{3}+1} & =\frac{x\left(x^{3}+1\right)}{x^{3}+1}+\frac{x^{2}-x+1}{(x+1)\left(x^{2}-x+1\right)} \\
& =x+\frac{1}{x+1}
\end{aligned}
$$

Thus, for $x>1$, we have

$$
\frac{x^{4}+x^{2}+1}{x^{3}+1}=x+\frac{1}{x+1} \leq x+x=2 x .
$$

Hence, $\frac{x^{4}+x^{2}+1}{x^{3}+1}$ is big- \mathcal{O} of x with witnesses $C=2$ and $k=1$. Therefore, $n=1$.
(4) (a) (5 points) Show that $1+2+4+8+\ldots+2^{n}$ is big - Θ of 2^{n}. Please state the values used for constants C_{1} and C_{2} (that is, state what witnesses you use).
Solution: We need to prove that there are real numbers C_{1} and C_{2} and a positive real number k such that

$$
C_{1}\left|2^{n}\right| \leq\left|1+2+4+8+\ldots+2^{n}\right| \leq C_{2}\left|2^{n}\right|
$$

whenever $n>k$. The given series is a geometric series and since all the terms are positive, we have

$$
2^{n} \leq 1+2+4+8+\ldots+2^{n}=\frac{2^{n+1}-1}{2-1}=2^{n+1}-1 \leq 2^{n+1}=2 \cdot 2^{n}
$$

Hence, $1+2+4+8+\ldots+2^{n}$ is big $-\Theta$ of 2^{n} with witnesses $C_{1}=1$ and $C_{2}=2$.
(b) (6 points) Show that $\left\lfloor x+\frac{3}{4}\right\rfloor$ is big $-\Theta$ of x. Please state the values used for constants k, C_{1} and C_{2} (that is, state what witnesses you use).
Solution: By definition of the floor function, $\left\lfloor x+\frac{3}{4}\right\rfloor \leq x+\frac{3}{4}$. If $x>\frac{3}{4}$, then $\left\lfloor x+\frac{3}{4}\right\rfloor<2 x$. We also have that $x+\frac{3}{4}<\left\lfloor x+\frac{3}{4}\right\rfloor+1$, which can be rewritten as $x-\frac{1}{4}<\left\lfloor x+\frac{3}{4}\right\rfloor$. Now if $x>1$, then $x-\frac{x}{4}<x-\frac{1}{4}$, i.e., $\frac{3 x}{4}<x-\frac{1}{4}$. Therefore, $\frac{3 x}{4}<\left\lfloor x+\frac{3}{4}\right\rfloor$. Hence, for $x>1$,

$$
\frac{3 x}{4}<\left\lfloor x+\frac{3}{4}\right\rfloor<2 x .
$$

This shows that $\left\lfloor x+\frac{3}{4}\right\rfloor$ is big - Θ of x with the witnesses $C_{1}=\frac{3}{4}, C_{2}=2$ and $k=1$.

