MATH 150 - WRITTEN HOMEWORK # 6

(1) (a) (3 *points*) Show that $x^3 - 6x^2 + 12x - 8$ is big - \mathcal{O} of x^3 . Please state the values used for witnesses C and k.

Solution: Observe that when $x \ge 1$, we have $1 \le x \le x^2 \le x^3$. Therefore, we get $x^3 - 6x^2 + 12x - 8 \le x^3 + 6x^2 + 12x + 8 \le x^3 + 6x^3 + 12x^3 + 8x^3 = 27x^3$.

Hence, $x^3 - 6x^2 + 12x - 8$ is big - \mathcal{O} of x^3 with witnesses k = 1 and C = 27.

(b) (6 points) Determine whether or not the statement

x is big - Ω of $x \ln x$

is true. Prove your assertion.

Solution: If *x* is big - Ω of *x* ln *x*, then there exists positive constants *C*, *k* such that

$$x \ge C x \ln x, \quad \forall x > k \iff \frac{1}{C} \ge \ln x, \quad \forall x > k \iff e^{1/C} \ge x, \quad \forall x > k.$$

However, *C* is a constant, thus if $x > \max\{k, e^{1/C}\}$, then $x > e^{1/C}$, which is a contradiction. Hence, *x* is not big - Ω of $x \ln x$.

(2) (a) (6 points) Determine whether or not the statement

 $7x^{3}\ln x + 3x^{2} + 22$ is big - O of x^{3}

is true. Prove your assertion.

Solution: If $7x^3 \ln x + 3x^2 + 22$ is big - \mathcal{O} of x^3 , then there exists positive constants C, k such that

 $7x^3 \ln x + 3x^2 + 22 \le C x^3, \quad \forall x > k.$

Since $3x^2 + 22 > 0$, a fortiori, we have

$$7x^3 \ln x \le C x^3, \quad \forall x > k \iff \ln x \le \frac{C}{7}, \quad \forall x > k.$$

Thus if $x > \max\{k, e^{C/7}\}$ (note that *C* is a constant), then $\ln x > C/7$ (i.e., $x > e^{C/7}$), which is a contradiction. Hence, $7x^3 \ln x + 3x^2 + 22$ is not big - \mathcal{O} of x^3 .

(b) (3 points) Is x^3 big - Θ of $7x^3 \ln x + 3x^2 + 22$? Prove or disprove.

Solution: No. For x^3 to be big - Θ of $7x^3 \ln x + 3x^2 + 22$, we need that x^3 is both big - \mathcal{O} and big - Ω of $7x^3 \ln x + 3x^2 + 22$. However, we know from part (a) that

 $7x^3 \ln x + 3x^2 + 22$ is not big - \mathcal{O} of x^3 .

This is equivalent to the statement that

 x^3 is not big - Ω of $7x^3 \ln x + 3x^2 + 22$.

Therefore, the second statement is false.

(3) (a) (5 *points*) Show that $\frac{x^2 + 1}{x + 1}$ is big - \mathcal{O} of x. Please state the values used for witnesses C and k.

Solution: We simplify the fraction first as follows:

$$\frac{x^2+1}{x+1} = \frac{x^2-1+2}{x+1} = \frac{x^2-1}{x+1} + \frac{2}{x+1} = x - 1 + \frac{2}{x+1}$$

Thus, for x > 1, we have

$$\frac{x^2+1}{x+1} = x - 1 + \frac{2}{x+1} \le x.$$

Hence, $\frac{x^2 + 1}{x + 1}$ is big - \mathcal{O} of x with witnesses C = 1 and k = 1.

(b) (6 points) Find the least integer n such that $\frac{x^4 + x^2 + 1}{x^3 + 1}$ is big - \mathcal{O} of x^n . Show why your answer works and state the values used for witnesses C and k.

Solution: Observe that $x^3 + 1 = (x + 1)(x^2 - x + 1)$, we add and subtract x to the numerator and rearrange to again simplify the fraction first as follows:

$$\frac{x^4 + x^2 + 1}{x^3 + 1} = \frac{(x^4 + x) + (x^2 - x + 1)}{x^3 + 1} = \frac{x(x^3 + 1)}{x^3 + 1} + \frac{x^2 - x + 1}{(x + 1)(x^2 - x + 1)}$$
$$= x + \frac{1}{x + 1}.$$

Thus, for x > 1, we have

$$\frac{x^4 + x^2 + 1}{x^3 + 1} = x + \frac{1}{x+1} \le x + x = 2x.$$

Hence, $\frac{x^4 + x^2 + 1}{x^3 + 1}$ is big - \mathcal{O} of x with witnesses $C = 2$ and $k = 1$. Therefore, $n = 1$.

(4) (a) (5 points) Show that $1 + 2 + 4 + 8 + ... + 2^n$ is big - Θ of 2^n . Please state the values used for constants C_1 and C_2 (that is, state what witnesses you use).

Solution: We need to prove that there are real numbers C_1 and C_2 and a positive real number k such that

$$|C_1|2^n| \le |1+2+4+8+\ldots+2^n| \le C_2|2^n|$$

whenever n > k. The given series is a geometric series and since all the terms are positive, we have

$$2^{n} \le 1 + 2 + 4 + 8 + \ldots + 2^{n} = \frac{2^{n+1} - 1}{2 - 1} = 2^{n+1} - 1 \le 2^{n+1} = 2 \cdot 2^{n}.$$

Hence, $1 + 2 + 4 + 8 + \ldots + 2^n$ is big - Θ of 2^n with witnesses $C_1 = 1$ and $C_2 = 2$.

(b) (6 *points*) Show that $\lfloor x + \frac{3}{4} \rfloor$ is big - Θ of x. Please state the values used for constants k, C_1 and C_2 (that is, state what witnesses you use).

Solution: By definition of the floor function, $\lfloor x + \frac{3}{4} \rfloor \leq x + \frac{3}{4}$. If $x > \frac{3}{4}$, then $\lfloor x + \frac{3}{4} \rfloor < 2x$. We also have that $x + \frac{3}{4} < \lfloor x + \frac{3}{4} \rfloor + 1$, which can be rewritten as $x - \frac{1}{4} < \lfloor x + \frac{3}{4} \rfloor$. Now if x > 1, then $x - \frac{x}{4} < x - \frac{1}{4}$, i.e., $\frac{3x}{4} < x - \frac{1}{4}$. Therefore, $\frac{3x}{4} < \lfloor x + \frac{3}{4} \rfloor$. Hence, for x > 1, $\frac{3x}{4} < \lfloor x + \frac{3}{4} \rfloor < 2x$.

This shows that $\lfloor x + \frac{3}{4} \rfloor$ is big - Θ of x with the witnesses $C_1 = \frac{3}{4}$, $C_2 = 2$ and k = 1.