MATH 150-WRITTEN HOMEWORK \# 5 - SOLUTIONS

(1) (10 points)

(a) (2 points) There are four different functions $f:\{a, b\} \rightarrow\{0,1\}$. List them all.

Solution: Four functions are: $f_{1}=\{(a, 0),(b, 0)\}, f_{2}=\{(a, 1),(b, 0)\}, f_{3}=\{(a, 0),(b, 1)\}$, and $f_{4}=\{(a, 1),(b, 1)\}$.
(b) (5 points) Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a function defined by $f(n)=2 n+3$. Determine if f is one-to-one, onto, bijective, or neither. Justify your answer!
Solution: This function is one-to-one. To see this, suppose $m, n \in \mathbb{Z}$ and $f(m)=f(n)$. This means that $2 m+3=2 n+3$, which implies that $2 m=2 n$, and thus $m=n$. Therefore, f is one-to-one.
This function is not surjective. To see this, observe that $f(n)$ is odd for all $n \in \mathbb{Z}$. So given the (even) number, say 2 in the codomain \mathbb{Z}, there is no n with $f(n)=2$.
(c) (3 points) Let $g: \mathbb{R} \rightarrow \mathbb{Z}$ be a function defined by $g(x)=\lfloor x\rfloor$. Determine if g is one-toone, onto, bijective, or neither. Justify your answer!
Solution: This function is onto. To see this, observe that the range, and co-domain is, \mathbb{Z}, the set of all integers. Also for any integer, $n, g(n)=\lfloor n\rfloor=n$, meaning that every integer, n, is reached, or obtained by the floor function, $g(x)=\lfloor x\rfloor$.
This function is not one-to-one. To see this, observe that multiple numbers are rounded down to the same integer. For example, $g(3.4)=\lfloor 3.4\rfloor=3$, and $g(3.7)=\lfloor 3.7\rfloor=3$, so that $g(3.4)=g(3.7)$, but $3.4 \neq 3.7$.
(2) (12 points.)
(a) Let $g: A \rightarrow B$ and $f: B \rightarrow C$ be two functions. Show that if g and f are both injective, then $f \circ g: A \rightarrow C$ is injective.
Solution: To show that $f \circ g: A \rightarrow C$ is injective we must show that for all $a, b \in A$, $f(g(a))=f(g(b)) \Longrightarrow a=b$. Consider the function f, we know that f is injective (that is, $f(a)=f(b) \Longrightarrow a=b$. Then from this we deduce that the statement $f(g(a))=$ $f(g(b)) \Longrightarrow g(a)=g(b)$, but g is also injective which implies that $a=b$. Therefore, $f \circ g: A \rightarrow C$ is injective.
(b) Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two functions. Show that if $g \circ f: A \rightarrow C$ is surjective, then g is surjective.
Solution: Assume that $g \circ f: A \rightarrow C$ is surjective and then consider the case where g is not surjective. Now $g \circ f: A \rightarrow C$ is surjective means that for all $c \in C$, there exists $a \in A$ such that $g(f(a))=c$, where $f(a) \in B$. However, if g is not surjective, then this implies that there exists $c \in C$ such that there is no $f(a) \in B$ such that $g(f(a))=c$, which contradicts the surjectivity of $g \circ f: A \rightarrow C$. Hence, if $g \circ f: A \rightarrow C$ is surjective, then g must also be surjective.

Alternatively, suppose that $g \circ f: A \rightarrow C$ is surjective. Let $c \in C$. Since $g \circ f$ is surjective, there exists $a \in A$ such that $g(f(a))=c$, where $f(a) \in B$. Therefore, if we let $b=f(a) \in B$, then we see that for every $c \in C$ there exists $b \in B$ such that $g(b)=c$. Hence, g is surjective.
(3) (8 points.) Prove that the function $f: \mathbb{R}-\{3\} \rightarrow \mathbb{R}-\{8\}$ defined by $f(x)=\frac{8 x+3}{x-3}$ is bijective.

Solution: Need to show that the function f is both injective and surjective.
Injective: Assume $x, y \in \mathbb{R}-\{3\}$ and

$$
\frac{8 x+3}{x-3}=\frac{8 y+3}{y-3} \Longleftrightarrow(8 x+3)(y-3)=(8 y+3)(x-3)
$$

Expanding both sides leads to

$$
-24 x+3 y=-24 y+3 x \Longleftrightarrow 27 y=27 x \Longleftrightarrow y=x
$$

Thus, f is injective.
Surjective: For any $y \in \mathbb{R}-\{8\}$, take $x=\frac{3(y+1)}{y-8}$ and note that $x \neq 3$. Then

$$
f(x)=\frac{8\left(\frac{3(y+1)}{y-8}\right)+3}{\frac{3(y+1)}{y-8}-3}=\frac{\frac{27 y}{y-8}}{\frac{27}{y-8}}=y
$$

Thus, f is surjective. Hence, f is bijective.
(4) (10 points.) Prove that the function $f: \mathbb{N} \rightarrow \mathbb{Z}$ defined by $f(n)=\frac{(-1)^{n}(2 n-1)+1}{4}$ is bijective.
Solution: To show f is injective, assume $m, n \in \mathbb{N}$ and $f(m)=f(n)$. This means that

$$
\frac{(-1)^{m}(2 m-1)+1}{4}=\frac{(-1)^{n}(2 n-1)+1}{4} \Longleftrightarrow(-1)^{m}(2 m-1)=(-1)^{n}(2 n-1)
$$

We first show that m and n have same parity. Arguing by contradiction, assume m is even and n is odd. Then the previous expression reduces to $2 m-1=-(2 n-1)$, which implies $m+n=1$. This contradicts the fact that $m, n \in \mathbb{N}$. So m and n must be both even or both odd. Now in either case, $(-1)^{m}(2 m-1)=(-1)^{n}(2 n-1)$ yields $2 m-1=2 n-1$, which implies $m=n$. Thus, f is injective.

To prove f is surjective, for any $m \in \mathbb{Z}$, take $n=2 m$, is $m>0$, and $n=-2 m+1$, if $m \leq 0$. Observe that $n \in \mathbb{N}$. Now when $m>0$,

$$
f(n)=\frac{(-1)^{n}(2 n-1)+1}{4}=\frac{(-1)^{2 m}(2(2 m)-1)+1}{4}=m
$$

and when $m \leq 0$,

$$
f(n)=\frac{(-1)^{n}(2 n-1)+1}{4}=\frac{(-1)^{-2 m+1}(2(-2 m+1)-1)+1}{4}=m .
$$

So f is surjective. Therefore, f is bijective.

