MATH 150 - WRITTEN HOMEWORK # 4 - SOLUTIONS

- (1) (15 points.) Let $A = \{0, 1, 4, 5, 6, 7, 9, 10, 11\}$, $B = \{x \mid x \text{ is an even integer and } 3 \le x \le 8\}$, and $C = \{a, b, c, 1, 2, 3\}$.
 - (a) Replace the blank with the most appropriate symbol $(\in, \notin, \subseteq, \not\subseteq)$ Solution:

$$\begin{split} 8 \in B, & 8 \notin A, \quad 7 \notin B, \quad 4 \in A, \quad c \in C, \quad a \notin B, \quad \{4, 5, 9\} \subseteq A, \\ \{4, 5, 8\} \not\subseteq B, \quad \{a, 2, c\} \subseteq C. \end{split}$$

(b) Compute: $A \cup B$, $A \cap B$, A - B, B - A, $\mathcal{P}(A \cap B)$, $(A \cap C) \times \{a, b, c\}$ Solution:

$$\begin{split} A \cup B &= \{0, 1, 4, 5, 6, 7, 8, 9, 10, 11\}, \qquad A \cap B = \{4, 6\}, \qquad A - B = \{0, 1, 5, 7, 9, 10, 11\}, \\ B - A &= \{8\}, \qquad \mathcal{P}(A \cap B) = \{\emptyset, \{4\}, \{6\}, \{4, 6\}\}, \\ (A \cap C) \times \{a, b, c\} &= \{(4, a), (4, b), (4, c), (6, a), (6, b), (6, c)\}. \end{split}$$

- (2) (15 *points*.) Let *A*, *B* and *C* be arbitrary sets. Prove or give a counterexample to the following statements:
 - (a) $A (B \cap C) = (A B) \cup (A C).$

Solution: We need to show that

- (i) $A (B \cap C) \subseteq (A B) \cup (A C)$, and
- (ii) $(A B) \cup (A C) \subseteq A (B \cap C)$.

To prove (i), let $x \in A - (B \cap C)$. Then $x \in A$ and $x \notin (B \cap C)$. It follows from the later that $x \notin B$ or $x \notin C$. If $x \in A$, then $x \in A - B$, and thus, $x \in (A - B) \cup (A - C)$. For the second case, if $x \in A$, then $x \in A - C$, which again implies that $x \in (A - B) \cup (A - C)$. Thus, we always have $x \in (A - B) \cup (A - C)$. Hence, $A - (B \cap C) \subseteq (A - B) \cup (A - C)$.

To prove (ii), let $x \in (A-B) \cup (A-C)$. Then either $x \in A-B$ or $x \in A-C$. If $x \in A-B$, then $x \in A$ and $x \notin B$. Since $x \notin B$, we have that $x \notin B \cap C$. Thus, $x \in A$ and $x \notin B \cap C$, so $x \in A - (B \cap C)$. Now if $x \in A - C$, then $x \in A$ and $x \notin C$. Since $x \notin C$, we have that $x \notin B \cap C$. Thus, as before $x \in A$ and $x \notin B \cap C$, and we have that $x \in A - (B \cap C)$. Hence, $(A - B) \cup (A - C) \subseteq A - (B \cap C)$.

(b) $(A - B) \cup C = (A \cup B \cup C) - (A \cap B).$

Solution: Not true. Let *A* and *C* bet empty sets, but B not an empty set. Suppose $x \in B$. Then A - B is empty, so $(A - B) \cup C$ is empty. On the other hand, $A \cap B$ is empty, and $x \in A \cup B \cup C$, so $x \in (A \cup B \cup C) - (A \cap B)$, which means that $(A \cup B \cup C) - (A \cap B)$ is not empty. Thus, not equal to $(A - B) \cup C$. (3) (10 points.) Suppose A and B are sets. Prove that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ if and only if $A \subseteq B$.

Solution: Need to prove that

(a) $A \subseteq B \implies \mathcal{P}(A) \subseteq \mathcal{P}(B)$, and

(b) $\mathcal{P}(A) \subseteq \mathcal{P}(B) \implies A \subseteq B$.

To prove (a), suppose $A \subseteq B$, then $(\forall x \in A) x \in B$. Thus, if $C \in \mathcal{P}(A)$, then $C \subseteq A$. But then, since $A \subseteq B$, it follows that $C \subseteq B$. This means that $C \in \mathcal{P}(B)$. Hence, $(\forall C \in \mathcal{P}(A)) C \in \mathcal{P}(B)$, so therefore $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

To prove (b), suppose $\mathcal{P}(A) \subseteq \mathcal{P}(B)$, then in particular for any $x \in A$, the singleton set $\{x\} \subseteq A$, so $\{x\} \in \mathcal{P}(A)$. But then, since $\mathcal{P}(A) \subseteq \mathcal{P}(B)$, it follows that $\{x\} \in \mathcal{P}(B)$. This means that $\{x\} \subseteq B$, thus $x \in B$. Since this holds for all $x \in A$, we have $A \subseteq B$.