MATH 150-WRITTEN HOMEWORK \# 4-SOLUTIONS

(1) (15 points.) Let $A=\{0,1,4,5,6,7,9,10,11\}, B=\{x \mid x$ is an even integer and $3 \leq x \leq 8\}$, and $C=\{a, b, c, 1,2,3\}$.
(a) Replace the blank with the most appropriate symbol $(\in, \notin, \subseteq, \nsubseteq)$

Solution:

$8 \in B, \quad 8 \notin A, \quad 7 \notin B, \quad 4 \in A, \quad c \in C, \quad a \notin B, \quad\{4,5,9\} \subseteq A$,
$\{4,5,8\} \nsubseteq B, \quad\{a, 2, c\} \subseteq C$.
(b) Compute: $A \cup B, \quad A \cap B, \quad A-B, \quad B-A, \quad \mathcal{P}(A \cap B), \quad(A \cap C) \times\{a, b, c\}$

Solution:

$$
\begin{aligned}
& A \cup B=\{0,1,4,5,6,7,8,9,10,11\}, \quad A \cap B=\{4,6\}, \quad A-B=\{0,1,5,7,9,10,11\}, \\
& B-A=\{8\}, \quad \mathcal{P}(A \cap B)=\{\emptyset,\{4\},\{6\},\{4,6\}\} \\
& (A \cap C) \times\{a, b, c\}=\{(4, a),(4, b),(4, c),(6, a),(6, b),(6, c)\}
\end{aligned}
$$

(2) (15 points.) Let A, B and C be arbitrary sets. Prove or give a counterexample to the following statements:
(a) $A-(B \cap C)=(A-B) \cup(A-C)$.

Solution: We need to show that
(i) $A-(B \cap C) \subseteq(A-B) \cup(A-C)$, and
(ii) $(A-B) \cup(A-C) \subseteq A-(B \cap C)$.

To prove (i), let $x \in A-(B \cap C)$. Then $x \in A$ and $x \notin(B \cap C)$. It follows from the later that $x \notin B$ or $x \notin C$. If $x \in A$, then $x \in A-B$, and thus, $x \in(A-B) \cup(A-C)$. For the second case, if $x \in A$, then $x \in A-C$, which again implies that $x \in(A-B) \cup(A-C)$. Thus, we always have $x \in(A-B) \cup(A-C)$. Hence, $A-(B \cap C) \subseteq(A-B) \cup(A-C)$.

To prove (ii), let $x \in(A-B) \cup(A-C)$. Then either $x \in A-B$ or $x \in A-C$. If $x \in A-B$, then $x \in A$ and $x \notin B$. Since $x \notin B$, we have that $x \notin B \cap C$. Thus, $x \in A$ and $x \notin B \cap C$, so $x \in A-(B \cap C)$. Now if $x \in A-C$, then $x \in A$ and $x \notin C$. Since $x \notin C$, we have that $x \notin B \cap C$. Thus, as before $x \in A$ and $x \notin B \cap C$, and we have that $x \in A-(B \cap C$. Hence, $(A-B) \cup(A-C) \subseteq A-(B \cap C)$.
(b) $(A-B) \cup C=(A \cup B \cup C)-(A \cap B)$.

Solution: Not true. Let A and C bet empty sets, but B not an empty set. Suppose $x \in B$. Then $A-B$ is empty, so $(A-B) \cup C$ is empty. On the other hand, $A \cap B$ is empty, and $x \in A \cup B \cup C$, so $x \in(A \cup B \cup C)-(A \cap B)$, which means that $(A \cup B \cup C)-(A \cap B)$ is not empty. Thus, not equal to $(A-B) \cup C$.
(3) (10 points.) Suppose A and B are sets. Prove that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ if and only if $A \subseteq B$.

Solution: Need to prove that
(a) $A \subseteq B \Longrightarrow \mathcal{P}(A) \subseteq \mathcal{P}(B)$, and
(b) $\mathcal{P}(A) \subseteq \mathcal{P}(B) \Longrightarrow A \subseteq B$.

To prove (a), suppose $A \subseteq B$, then $(\forall x \in A) x \in B$. Thus, if $C \in \mathcal{P}(A)$, then $C \subseteq A$. But then, since $A \subseteq B$, it follows that $C \subseteq B$. This means that $C \in \mathcal{P}(B)$. Hence, $(\forall C \in$ $\mathcal{P}(A)) C \in \mathcal{P}(B)$, so therefore $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

To prove (b), suppose $\mathcal{P}(A) \subseteq \mathcal{P}(B)$, then in particular for any $x \in A$, the singleton set $\{x\} \subseteq A$, so $\{x\} \in \mathcal{P}(A)$. But then, since $\mathcal{P}(A) \subseteq \mathcal{P}(B)$, it follows that $\{x\} \in \mathcal{P}(B)$. This means that $\{x\} \subseteq B$, thus $x \in B$. Since this holds for all $x \in A$, we have $A \subseteq B$.

